
Getting the balance right between grass quantity and quality - what the research says

Eva Lewis, Marion Beecher, Brian Garry, Emer Kennedy, Michael O'Donovan and Deirdre Hennessy

Teagasc, AGRIC, Moorepark

Introduction: why focus on grass-based systems

Introduction: grass quality

- Organic Matter Digestibility (OMD) is common measurement of grass quality
- Grass OMD is used to calculate the grass energy content, called the UFL value (Feed Unit for Lactation)
- High OMD
 - high UFL value = high energy content
 - lower fibre = less filling \rightarrow so more can be eaten
- Low OMD
 - Iow UFL value = Iow energy content
 - higher fibre = more filling \rightarrow so less can be eaten

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]
Energy required (UFL/d)	15.8
High quality grass	
Intake required (kg DM/d)	
Potential intake (kg DM/d)	
Poor quality grass	
Intake required (kg DM/d)	
Potential intake (kg DM/d)	·

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]
Energy required (UFL/d)	15.8
High quality grass	
Intake required (kg DM/d)	15.2
Potential intake (kg DM/d)	
Poor quality grass	
Intake required (kg DM/d)	
Potential intake (kg DM/d)	·

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]
Energy required (UFL/d)	15.8
High quality grass	
Intake required (kg DM/d)	15.2
Potential intake (kg DM/d)	17.8
Poor quality grass	
Intake required (kg DM/d)	
Potential intake (kg DM/d)	

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]	
Energy required (UFL/d)	15.8	
High quality grass		
Intake required (kg DM/d)	15.2	
Potential intake (kg DM/d)	17.8	
Poor quality grass		
Intake required (kg DM/d)	16.5	
Potential intake (kg DM/d)	1	

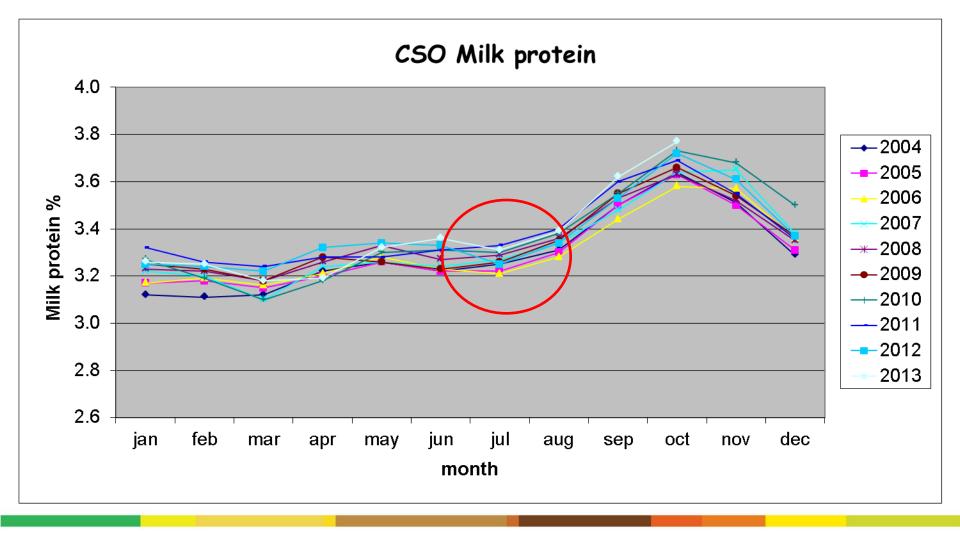
550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]	
Energy required (UFL/d)	15.8	
High quality grass		
Intake required (kg DM/d)	15.2	
Potential intake (kg DM/d)	17.8	
Poor quality grass		
Intake required (kg DM/d)	16.5	
Potential intake (kg DM/d)	16.8	

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein

Milk yield (litres) [Milk solids (kg)]	24 [1.73]	28 [2.02]
Energy required (UFL/d)	15.8	17.5
High quality grass		
Intake required (kg DM/d)	15.2	
Potential intake (kg DM/d)	17.8	
Poor quality grass		
Intake required (kg DM/d)	16.5	
Potential intake (kg DM/d)	16.8	

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein


Milk yield (litres) [Milk solids (kg)]	24 [1.73]	28 [2.02]	
Energy required (UFL/d)	15.8	17.5	
High quality grass			
Intake required (kg DM/d)	15.2	16.8	
Potential intake (kg DM/d)	17.8	18.3	
Poor quality grass			
Intake required (kg DM/d)	16.5	_	
Potential intake (kg DM/d)	16.8	_	

550 kg mature cow, mid-lactation, 3.8% fat, 3.4% protein


Milk yield (litres) [Milk solids (kg)]	24 [1.73]	28 [2.02]	
Energy required (UFL/d)	15.8	17.5	
High quality grass			
Intake required (kg DM/d)	15.2	16.8	
Potential intake (kg DM/d)	17.8	18.3	
Poor quality grass			
Intake required (kg DM/d)	16.5	18.2	
Potential intake (kg DM/d)	16.8	17.2	$\mathbf{\Lambda}$

- Survey of 45 spring-calving dairy farms to examine onfarm factors affecting mid-season milk protein %
- Higher milk protein % in mid-season was associated with higher quality grass

Pre-grazing herbage mass (PGHM)

- A range of factors affect grass quality and grass quantity
 - Soil fertility
 - Proportion of perennial ryegrass in sward
 - Perennial ryegrass cultivar
 - Fertiliser usage
 - Pre grazing herbage mass (PGHM)

Comparison of three PGHM

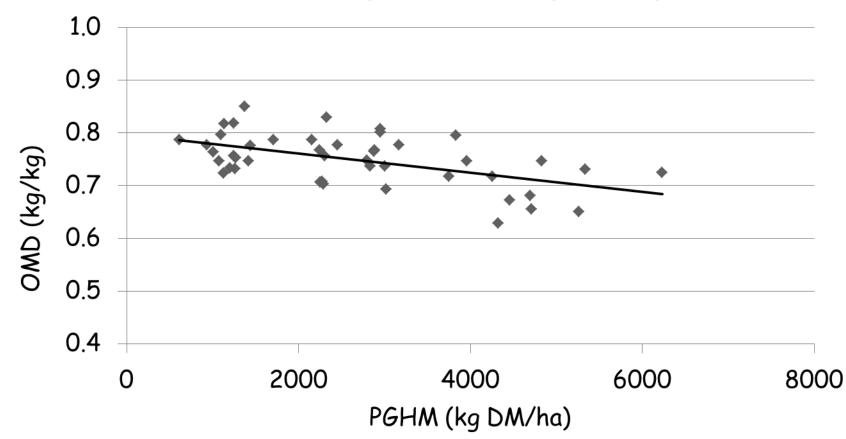
April to September
Three target PGHM

- Low 900 kg DM/ha
- Medium 1500 kg DM/ha
- High 2000 kg DM/ha

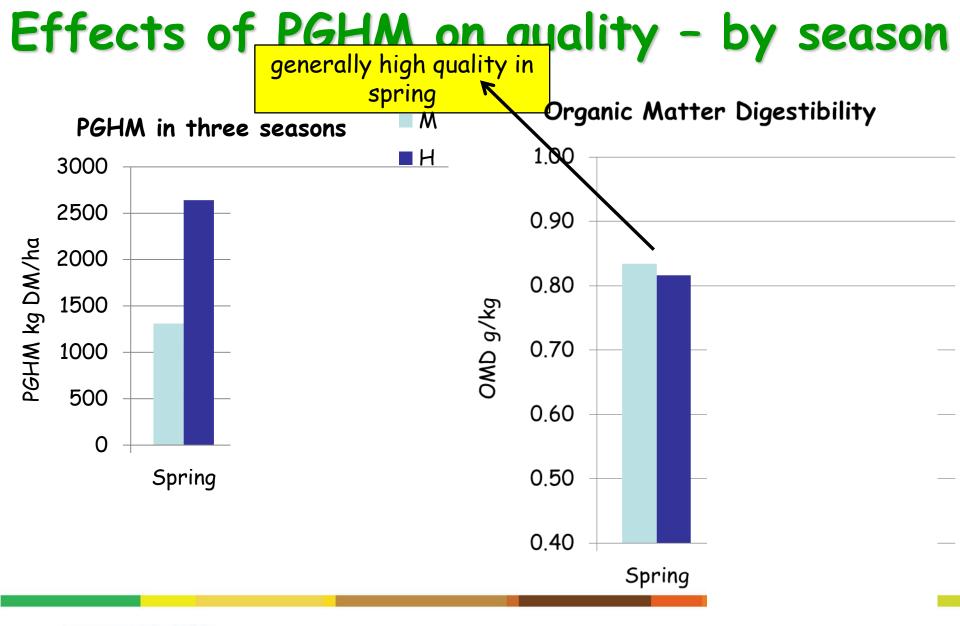
Swards were grazed to 4 cm

Very large area required K

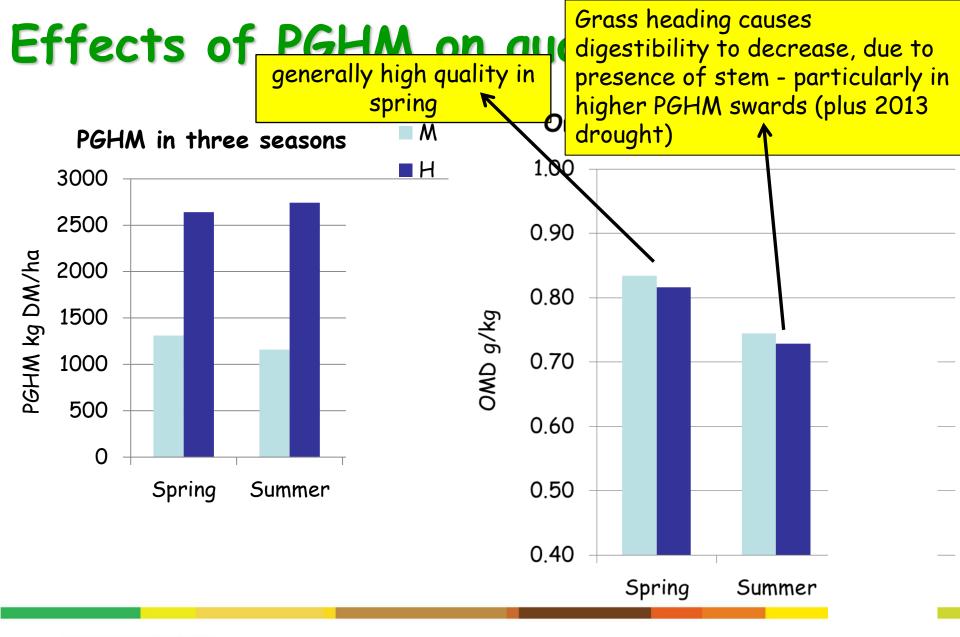
	Low	Medium	High		
Pre grazing herbage mass (kg DM/ha)	978	1521	2330		
Rotation length (days)	14.5	20.3	29.0		
Total herbage production Apr – Sept (t DM/ha)	11.1	13.0	14.2		
Leaf proportion	/ 70	67	62		
Stem proportion	/ 15	19	26		
Dead proportion	14	15	13		
	,				
Quantity Quality					
3 leaf stage is ideo grazing = 21 da		Directly; And	l via achieving ing height		
grazing - Er da			ing neight		

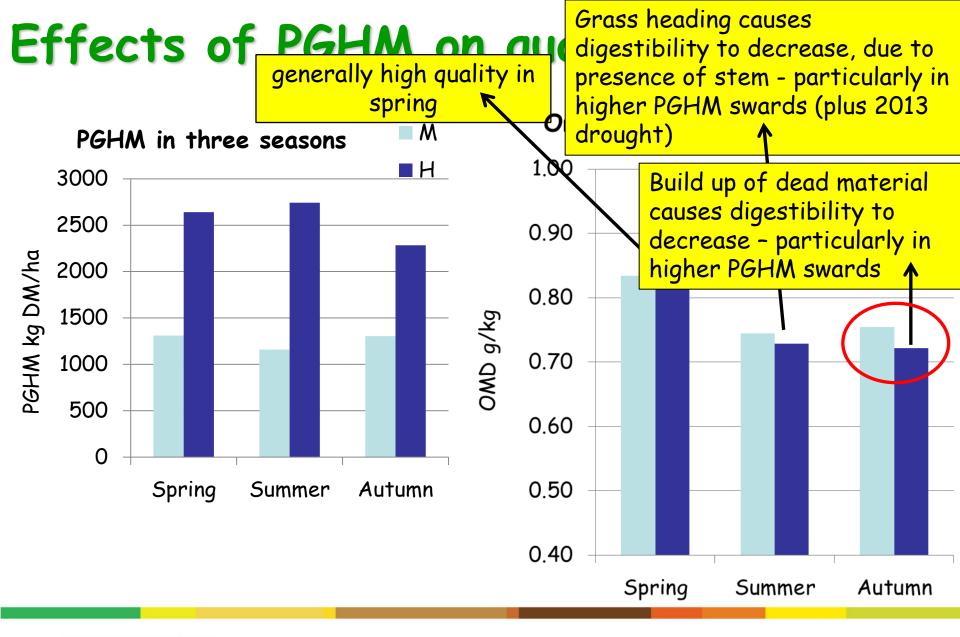

Effect of PGHM on intake and grazing time

	Low	Medium	High	Level of significance
Grazing time (h/day)	10.8ª	9.3 ^b	9.3 ^b	**
Rumination time (h/day)	8.4ª	9.0 ^b	9.9 ^c	*
DM intake (kg/cow/day)	15.2	16.5	15.7	+
MS yield (kg/cow/day)	1.42	1.43	1.31	NS



Effect of PGHM on grass quality



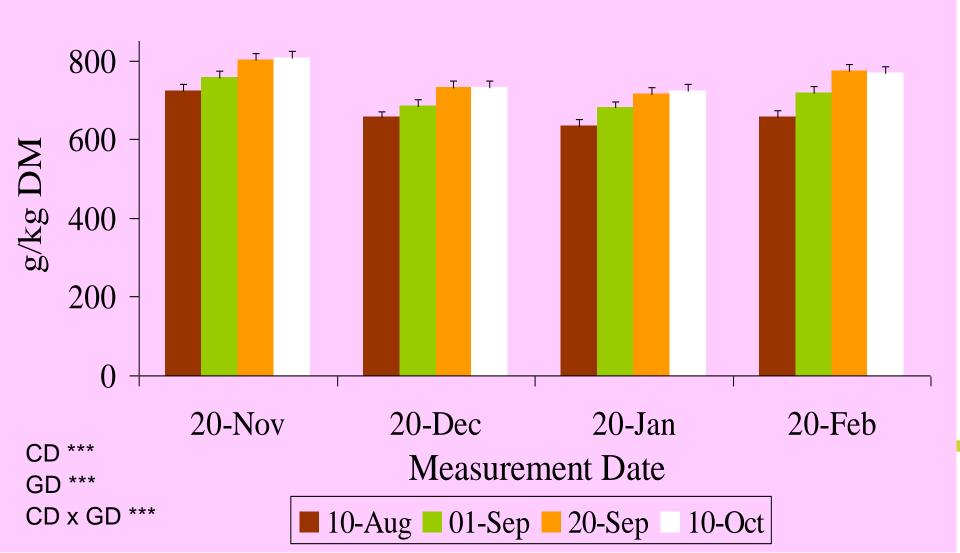


	PGHM	CP %	ADF %	UFL /kg DM	Fill value /kg DM	Potential UFL intake/day
Spring	M 1100	26.0	23.9	1.04	0.94	18.8

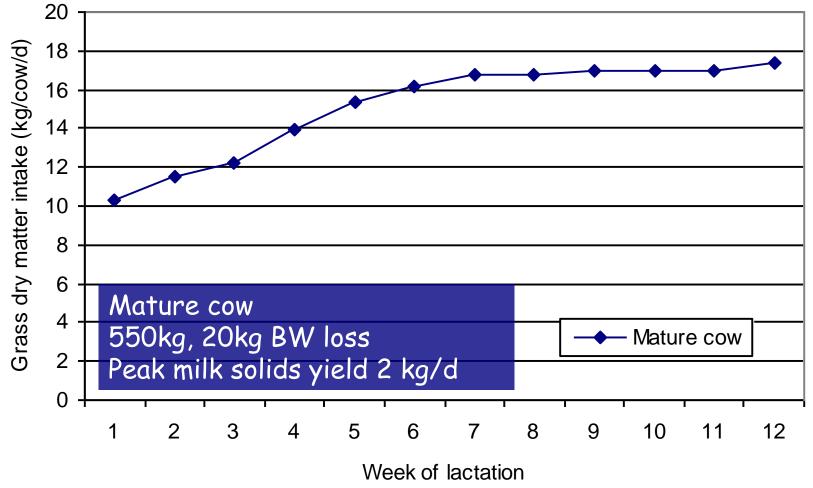
	PGHM	CP %	ADF %	UFL /kg DM	Fill value /kg DM	Potential UFL intake/day
Spring	M 1100	26.0	23.9	1.04	0.94	18.8
	H 2500	23.2	25.7	1.01	0.96	17.9

	PGHM	CP %	ADF %	UFL /kg DM	Fill value /kg DM	Potential UFL intake/day
Spring	M 1100	26.0	23.9	1.04	0.94	18.8
	H 2500	23.2	25.7	1.01	0.96	17.9
Summer	M 1100	21.1	24.0	1.00	0.97	17.5
	H 2500	17.7	25.3	0.97	1.00	16.5

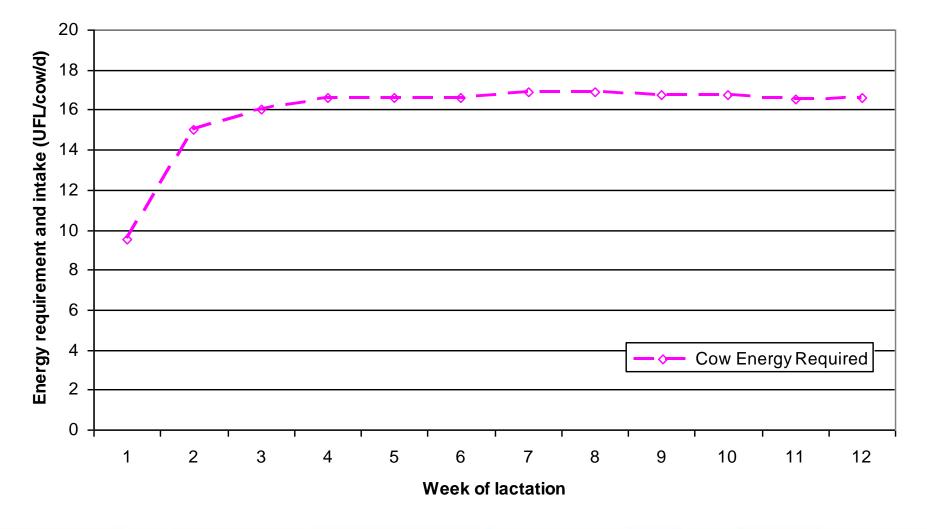
	PGHM	CP %	ADF %	UFL /kg DM	Fill value /kg DM	Potential UFL intake/day
Spring	M 1100	26.0	23.9	1.04	0.94	18.8
	H 2500	23.2	25.7	1.01	0.96	17.9
Summer	M 1100	21.1	24.0	1.00	0.97	17.5
	H 2500	17.7	25.3	0.97	1.00	16.5
Autumn	M 1100	23.0	26.2	0.99	0.96	17.5
	H 2500	20.0	27.7	0.95	1.00	16.2


Summary

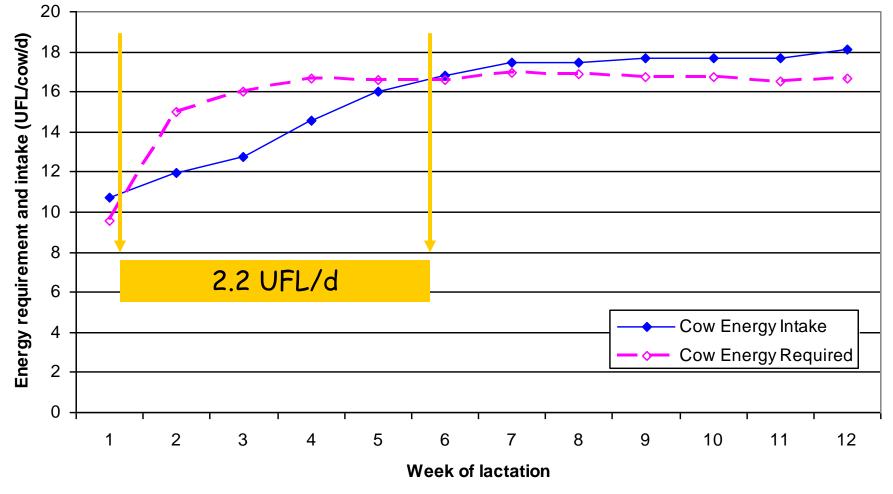
- In grass based milk production systems crucial to achieve balance between grass quality and quantity
 - Quality: DMI and MS yield (via fill value and energy content)
 - Quantity: grazing management and total annual herbage production
- Low PGHM swards
 - produce excellent quality grass
 - **but** consistently grazing low PGHM \downarrow total herbage production
- 🗆 High PGHM
 - Produce high total annual herbage production
 - but increased stem, and sometimes dead material, in sward
 - \downarrow sward quality and hence MS yield
 - difficult for cows to graze down to 4 cm (further \downarrow quality)


□ May - Sept: 1500 kg DM/ha from 18-24d rotations

DMD values at Moorepark for four autumn closing dates on four winter grazing occasions



Grass Dry Matter Intake in early lactation



Energy requirements

Energy: requirements vs intake (grass)

