Efficient use of N on grassland

James Humphreys

Moorepark

Annual Fertilizer N use and expenditure on fertilizer N in Ireland

Cost of fertilizer N in Ireland 1990 to 2013

Cost of fertilizer N (€ per kg) 1990 - 2013

Fertilizer N:milk price ratio 1990 - 2013

Overview

The fate of N in the soil

Rainfall and evapo-transpiration

Sunlight and soil temperature

Meeting sward requirements

Stocking rates and application patterns

Making use of white clover on farms

The fate of N in the soil

(1) Uptake by the grass sward

(2) Leached from the soil

(3) Denitrified from the soil

Rainfall & Evapo-transpiration

Rainfall mm/month 120 90 60 30 0 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Month

Sunlight & Soil Temperature

Global Solar Radiation (kiloJoules/cm²)

Soil Temperatures at 10 cm

Response to fertilizer N during the Spring

Herbage production response to spring application of fertilizer N

Annual Grass Growth

Summary: Rainfall & Evapotranspiration

High risk of loss during the spring

Split application during the spring

30 kg N/ha during mid-Jan to end Feb.

Followed 6 to 4 weeks later by second application

Volatilization during summer \rightarrow CAN (CAN-type fertilizers)

N retained in topsoil during summer months

Cease applying fertilizer N by mid-September

Meeting Sward Requirements

Net mineralization of soil organic matter N

140 kg N/ha/year

Factors affecting fertilizer N use on farms Background soil N availability (kg/ha)

The impact of soil pH on availability of N in soil

Meeting sward requirements

Meeting sward requirements Background release of soil N

Matching supply with demand

Stocking Rates & Application Patterns

Whole farm	Area harvested for silage				
stocking density	First cut	Second cut			
LU/ha	% of farm area				
2.6	43	35			
2.5	45	33			
2.4	47	26			
2.3	49	20			
2.2	51	12			
2.1	53	5			
2.0	55	0			
1.9	54	0			

Nitrogen application throughout the year

Recommended rates of fertilizer N for grassland during the year where approximately half of the farm is cut for first-cut silage and the amount of second cut is kept to a minimum (0 – 30% of the grassland area). Rates of fertilizer N are presented in kg per ha (units per acre in brackets)

Stocking rate	Jan/Feb	March	April	May	June	July August	September	Total	
(kg/ha organic N)								(kg/ha)	(u/ac.)
155 – 170	0	28 (23)	43 (35)	34 (28)	34 (28)	25 (20)		164	(133)
170 – 180	28 (23)	28 (23)	43 (35)	34 (28)	34 (28)	25 (20)		192	(156)
180 – 190	28 (23)	37 (30)	49 (40)	34 (28)	34 (28)	34 (28)		216	(175)
190 – 200	28 (23)	49 (40)	49 (40)	34 (28)	34 (28)	34 (28)	25 (20)	253	(205)
200 - 210	28 (23)	49 (40)	49 (40)	51 (41)	34 (28)	34 (28)	34 (28)	279	(226)
211 – 250	28 (23)	43 (35)	49 (40)	34 (28)	34 (28)	34 (28)	25 (20)	247	(200)

Table 2. Nitrogen fertilizer for different stocking rates on the area available for grazing during the year. Rates of nitrogen fertilizer are presented in kg per ha

Stocking rate	Nitro fertil	0	Stocking rate	Nitro ferti	•	Stocking rate	Nitrog	en fertilizer
(LU/ha)	kg/	ha	(LU/ha)	kg/	′ha	(LU/ha)	I	kg/ha
Mid March	Jan/Feb	March	May & June	April	May	July & August	Jun Jul	Aug Sep
<1.2	0	28	<3.5	28	17	<2.00	17	17
1.2 – 1.4	28	28	3.50 - 3.75	28	26	2.0 – 2.5	26	25
1.4 - 1.6	28	38	3.75 – 4.00	38	34	2.5 – 3.0	34	34
1.6 - 1.8	28	49	4.00 - 4.25	49	42	3.0 – 3.5	34	26 25
>1.8	28	49	>4.25	49	51	>3.5	34	34 34

Making efficient use of fertilizer N – Fertilizer N

Apply 23 units per acre in January/February (SR > 170 kg/ha)

Follow up with more fertilizer N within 6 weeks – mid-March

Third application to coincide with closing for silage in April

Maximise stocking rate on grazing area during April to June

Make all or most silage as first-cut – minimise second-cut

Large area of farm available for grazing from June onwards

Start building covers during late July or early August

Last application during early September

Making use of white clover on Farms

The relationship between white clover herbage yield and N fixation at Solohead Research Farm

The milk price (+) at which the profitability of WC would have equalled FN between 1990 and 2010 and projected to 2020 based on the increase in fertilizer N price between 1997 and 2010 (R2 = 0.77; P < 0.001)

Actual milk price (•) and the milk price (+) at which the profitability of WC would have equalled FN between 1990 and 2010 and projected to 2020 based on the increase in fertilizer N price between 1997 and 2010 (R2 = 0.77; P < 0.001)

Making efficient use of fertilizer N – White Clover

Large potential to cut fertilizer N use of farms – can be halved

Biological N fixation = 100 to 200 kg per ha per year

Recommended for stocking rates up to 2.5 LU per ha

Low fertilizer N input and tight grazing are important

Introduce clover by reseeding, over-sowing & management

Suits farms where a long grazing season can be achieved

Sensitive to shading over winter and poaching damage

Bloat & dock control are not serious impediments

Two Farms – SR 2.2 cows/ha	Inefficient	Efficient
Soil pH	5.5	6.5
Slurry management	after silage &	Jan/Feb &
	last grazing	March - silage
White clover content	None	~20%
Background N (kg/ha)	115	150
Available N slurry (kg/ha)	5	35
N fixed by clover (kg/ha)	0	120
Supply of non-fertilizer N (kg/ha)	120	305
Fertilizer N requirement (kg/ha)	275	90
Total soil N supply (kg/ha)	395	395
Cost of fertilizer (€/ha)	275	90
Cost on 50 ha farm (€)	13,750	4,500