#### The Signpost Series

#### 'Pointing the way to a low emissions agriculture'





#### **Dr David Wall**

Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co Wexford



# **Ammonia – The Challenges**

#### **Ammonia**

**Ammonia Source** 

98% of ammonia emissions from Ag

- 1% reduction to 2030
- 5% from 2030 onwards
- Ammonia mitigation can be synergistic or antagonistic with GHG mitigation

#### **Ammonia Policy**

- EU Clean Air Package 2030
  - EU ammonia Ag. emissions reduction 27%
  - Ireland ammonia Ag. emissions reduction 5%





# IRL Ammonia & GHG emissions profile

**Ammonia** GHG



**Emissions related to manure management** 

Areas we can identify for potential gaseous emission mitigation?

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

### **Ammonia MACC**



Teagasc 2015, An Analysis of the Cost of the Abatement of Ammonia Emissions in Irish Agriculture to 2030



## **Potential Management Solutions**

#### Iowering **Ammonia** emissions

#### kT NH<sub>3</sub> abated

|  | Protected urea | (switch 50% CAN to Protected Urea*) | 7.7 |
|--|----------------|-------------------------------------|-----|
|--|----------------|-------------------------------------|-----|

| • | Low-emission slurry spreading (dairy slurry)     | 2.7  |
|---|--------------------------------------------------|------|
| • | Low-emission slurry spreading (non-dairy slurry) | 1.7  |
| • | Alt. time manure spreading (dairy slurry)        | 1.5  |
| • | Alt. time manure spreading (non-dairy slurry)    | 0.91 |



Increase Nitrogen use-efficiency0.57

Cover slurry stores pigs (& outdoor cattle slurry)0.68

Slurry amendments/ additives 0.57



Greenhouse Gas MACC Agricultural mitigation



Teagasc 2018, GHG Marginal Abatement Cost Curve for agriculture for 2021-2030



# **Potential Management Solutions**

#### lowering agricultural **GHG** emissions

#### Mitigation Mt CO<sub>2</sub>e

| $\checkmark$ | Soil & N | l managem | ent mitigation | options | ~ <u>1.2</u> |
|--------------|----------|-----------|----------------|---------|--------------|
|--------------|----------|-----------|----------------|---------|--------------|

| <ul><li>Protected urea</li></ul> | (switch 50% CAN to Protected Urea*) | 0.52 |
|----------------------------------|-------------------------------------|------|
|----------------------------------|-------------------------------------|------|

| Draining wet minera | SOIS (1/3 poorly drained mineral soils) | 0.20 |
|---------------------|-----------------------------------------|------|
|---------------------|-----------------------------------------|------|

| Low-emission slurry spreading (50% slurry with LESS) 0.1 | 2 | 2 |
|----------------------------------------------------------|---|---|
|----------------------------------------------------------|---|---|

| Increase Nitrogen-use efficiency | (Liming soils to pH 6.3) | 0.10 |
|----------------------------------|--------------------------|------|
|----------------------------------|--------------------------|------|

| <ul><li>Extended grazing</li></ul> | (20% grassland area: 250d dry & 149d wet) | 0.07 |
|------------------------------------|-------------------------------------------|------|
|------------------------------------|-------------------------------------------|------|

#### ✓ Animal performance mitigation options



~0.62

#### **Nitrogen Loss from Slurry**

Losses depend on soil and climatic conditions

- Ammonia emissions increase in dry, sunny & windy weather
- Majority of N loss occurs within 24 hours after application





In this example: Trailing-shoe reduced emissions by 36% compared to Splash-plate Total ammonia emission reductions of up to 65% found with other studies



Nitrogen Fertiliser Replacement Values

| Application<br>Method                                        | Splash Plate / Broadcast | Dribble bar<br>/Bandspreader | Trailing Shoe | Shallow<br>Injection |
|--------------------------------------------------------------|--------------------------|------------------------------|---------------|----------------------|
|                                                              |                          |                              |               |                      |
| NH <sub>3</sub> Abatement <sup>1</sup>                       | 0%                       | 30%                          | 60%           | 70%                  |
| Total slurry N % availability <sup>2</sup>                   | 27%                      | 35%                          | 43%           | 46%                  |
| Available N from 11m <sup>3</sup> Cattle slurry <sup>3</sup> | 7 kg N                   | 9 kg N                       | 11 kg N       | 12 kg N              |
| Value Nitrogen €⁴                                            | €6.00                    | €7.70                        | €9.40         | €10.20               |

- 1, Ammonia loss abatement potential of different LESS methods as per ammonia gas inventory (EPA)
- 2, Total slurry N availability for different slurry spreading methods, based on ammonia loss abatement.
- 3, Available N in 11m<sup>3</sup> (1000 gallons) cattle slurry using different spreading methods. Typical total N in cattle slurry is 2.4 kg N/m<sup>3</sup>, as per Teagasc Green Book (Wall and Plunkett 2016)
- 4, Economic value (€) of N in 11m3 slurry based on protected urea price of €0.85/kg N



# Synergies & antagonisms Ammonia vs. GHG's

- Reducing ammonia emissions
  - reduce INDIRECT N<sub>2</sub>O (GHG) emissions.
- Altered timing & technique for land-spreading of manures
  - can increase DIRECT N<sub>2</sub>O emissions
- LESS and SPRING spreading of manures
  - will reduce Ammonia and also total N<sub>2</sub>O emissions
- Reducing CP% in diet will reduce both N<sub>2</sub>O & Ammonia
  - limited application where animals are at pasture
- Slurry amendments added during manure storage
  - reduce both methane (GHG) & ammonia from slurry storage

