

25-01-2022

How to remove Zn oxide in post-weaning piglet diets

Francesc Molist, PhD, DVM

Smaller piglets and higher variation...

Heterogeneity of litter size between individual sows

SCHOTHORST's RESEARCH FARM / 3113 litters / 2011-2020 unpublished

Current gut health challenges in the pig industry

Types of feed piglets encounter in their life

Week 1

Weaning

Creep feed

Sow milk

Week 2 Week 3 Week 4 Week 5....

PW diet

Pre-weaning

- Important colostrum intake.
- Long-lasting effects are due to different programming of the gut immune system. What are the long lasting effect of modifying the gut microbiota?
- Creep feed supplementation as early as possible.
- Develop an stable microbiota and oral tolerance & a robust GIT.
- Minimize the negative effects associated with weaning.
- Role of complex diets vs. simple diets pre-weaning is poorly understood.

Importance of colostrum (2)

	Piglets alive after 10 days	Piglets dead after 10 days
Birth interval (min)	20.0	23.8
Duration farrowing (min)	136.0 a	155.3 b
Time to 1st contact udder (min)	13.7 a	36.1 b
Time to 1st colostrum intake (min)	26.9 a	54.7 b
Body temperature at birth (°C)	38.9	39.0
Body temperature 1 hour after birth (°C)	38.4 a	37.5 b
Birth weight (g)	1368 ª	1063 b
Order birth	6.2 a	7.0 b

Tuchscherer et al., 2002

All piglets 2 days of life are positive for S. suis

> Tonsils (a reservoir)

qPCR of *S. suis* in tonsil swab DNA (healthy piglets)

Composition of bacteria in the sows

Murases et al, 2019

Probably we need different strategies to reduce S. suis problems vs. Clostridium neonatal diarrheas

Feeding strategies in pre-weaning diets

Pre-weaning management strategies

Pre-weaning creep feed intake

Huting et al., 2017

Role of complex vs. Simple diets pre-weaning

Hypothesis:

- ➤ In the absence of in-feed antibiotics and weaning piglets close to 24 days of age, having a simple low nutrient diet around weaning (+/- 10 days after weaning) could help to reduce post-weaning problems?
- Can we increase the % of eaters in the litters (from 60 > 100%)?
- What are the long term effects post-weaning?

Complex vs. Simple diet preweaning

- ➤ 24 sows and litters divided in 3 treatments. All litters standardized at 11 piglets / sow 24h post-farrowing.
- Experiment starts at 14 days of life until weaning. After weaning the middle class piglets were selected and all piglets received the same weaner I and II diets.
- Experimental treatments
- 1. Litters receiving creep feed.
- 2. Litters receiving a weaner diet.
- 3. Litters receiving sow feed.
- ➤ 4 Days PW 4 piglets per pen were euthanized to compare gut structure.

Results Pre-weaning

No differences in sows performance

Heo et al., 2018

No differences in BW of the piglets.

A tendency for a higher ADFI of eaters piglets in the creep group.

Effects post-weaning

- Piglets receiving the weaner diet pre- and post-weaning tended to show the highest ADFI and ADG in the first 2 weeks PW.
- Piglets eating the sow and the weaner diet pre-weaning showed longer villus height in the duodenum. Piglets eating sow diet pre-weaning showed deeper crypts in the ileum.

Heo et al., 2018

Post-weaning

- Important feed intake with control of substrate.
- Phase feeding with nutrient adaptations can help to minimize the risk factors.
- > Important management to reduce stress.
- Better knowledge nutrition and vaccination.
- Better understanding substrate bacteria interactions.
- > Animals should remain healthy and then they should grow

Excess non-digested nutrients in the GIT

Higher risk lleum Feces of diarrhea Cecum

> • Тгеропета Pseudomonas Succinivitrio Escherichia : Phascolarcfobacteriu

Parasporobacterium

Butyricicoccus Ruminococcus

 Clostridium ■ Anaerovibrio Lactobacillus = Roseburia Oscill/becter # Pap/libecter Coprococcus

Twicibacter Anaerobecter Tamoereita

 Bacteroides ■ Prevoteda

 Halletta Parabacteroides

Percent of assigned reads

70%

60%

30%

20%

10%

5 - 10 days

ACUTE PHASE

- estinal stasis Anore
- o absorption PW diarrhea (PWD)
- Int io.
- Intestil al damage

5-10 days

MATURATION PHASE

ad in

Excess nutrients increase the risk of *S. suis*

Knowhow to feed

S. suis outbreak: a multifactorial problem!

How we can help the piglets to have 5 a good start?

MODIFIERS OF THE MICROBIOTA OF THE GIT

- Acidifiers
- Prebiotics
- Probiotics
- Symbiotics
- Plant extracts
- Minerals: 7nO & Cu
- Dietary fibre
- Low CP diet
- Role of fat

PROMOTERS OF FOOD CONSUMPTION AND PRODUCTION ENHANCERS

- Palatable ingredients
- Digestible ingredients
- Flavours
- Synthetic amino acids

Feacal score results during the first 4 weeks PW

Diluting the diet with I-CHO sources improved the faecal score

Treatment	T1	T2	Т3	T4	T5	T6	T7
	Control	6%	12%	6%	12%	6%	12%
		Soya hulls	Soya hulls	Sunflower hulls	Sunflower hulls	Wheat straw	Wheat stray

SFR 2016

Fiber & CP fermentation

Level

Protein digestion - stomach

Hypothetical difference between piglets and G/F: Piglets have a higher stomach pH/ need longer to acidify their stomach content after a meal than grower/ finishers

Piglets <60 days of age are not able to acidify the stomach sufficiently

Acid binding capacity (mEq/kg)

Protein sources have a greater impact on acid binding capacity than cereals

Acid binding capacity (mEq/kg)

Minerals have a large impact on the ABC. Therefore, reduce minerals that will have a negative impact on the pH in the stomach (high ABC-4 value)

Organic acids will help to reduce the pH in the stomach (acidifying effect)

Optimal ABC-4 value

Body weight day 35

^{*} Achieved by adding limestone, Ca-formate and fumaric acid

SFR RR 1614

Take home message post-weaning

Thank you for your attention

FMolist@schothorst.nl