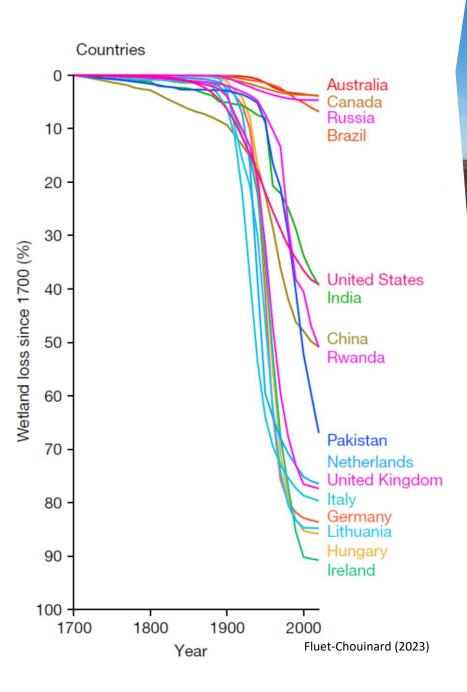
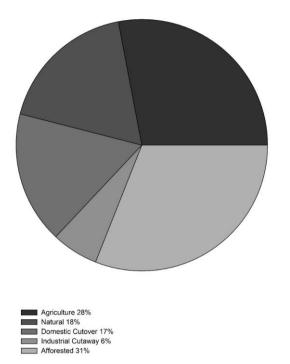
Counting carbon on agricultural peat soils

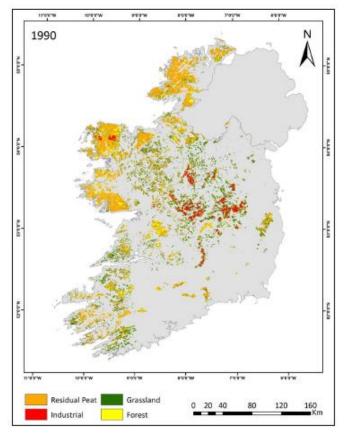

EddyFlux

Matthew Saunders, Alina Premrov, Florence Renou-Wilson, Ian Clancy, Rachael Murphy, John Connolly, Louis Gilet, Wahaj Habib, Owen Fenton, Pat Tuohy and David Wilson

What are peatlands and why are they important?

- What are peatlands?
 - Form in areas of high precipitation and where drainage is impeded
 - Areas of carbon rich, dead/partially decomposed plant material
 - Peat soils refer to soils with at least 20% organic carbon and a minimum thickness of 40cm
- These areas provide multiple ecosystem services
 - Carbon sequestration
 - Global peatlands hold ~25% global soil C stocks on ~3% land area
 - In Ireland peatlands hold ~62-75% of the SOC stock on ~23% land area
 - Water quality
 - Flood management
 - Biodiversity
 - Societal, cultural and recreational
- Significant areas of peatland in Ireland have been altered through drainage
 - Agriculture
 - Extraction for energy and horticulture
 - Conversion to forestry
- Vulnerable to management and climatic variability
 - Influence on key drivers of C/GHG exchange
- Growing appreciation of role of peatlands in regulating environmental processes
 - Opportunity to enhance multiple ecosystem services and develop nature positive systems through rehabilitation
 - Direct policy focus targets for drained organic soils with reduced management intensity.

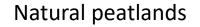



Where are they, what are they used for and what condition are they in?

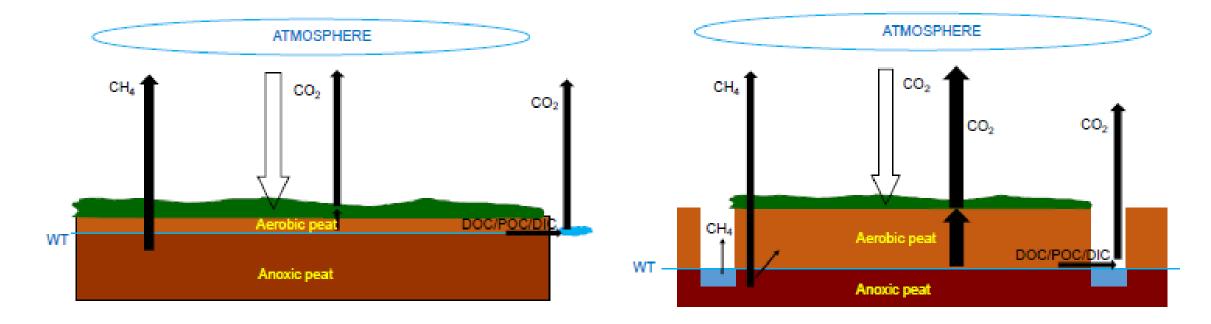
- Peatlands cover 1.66 M ha which equates to ~23.3% of the total land area
- Agricultural peats ~ 339,000 hectares of drained grassland*

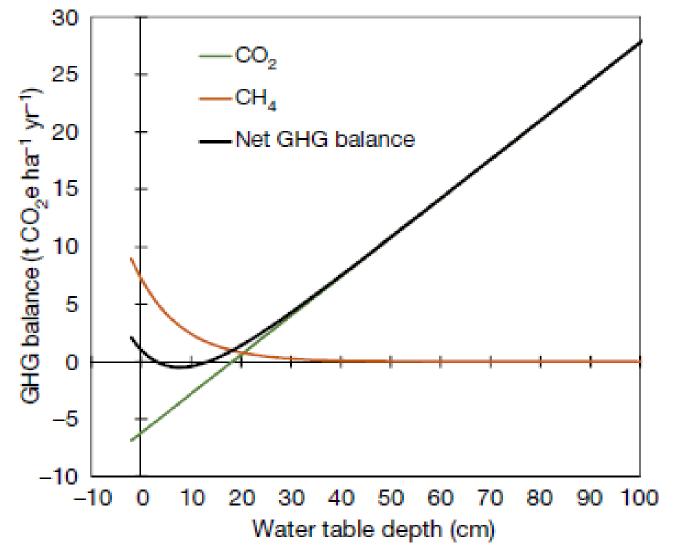
Peatland area and land use (Wilson 2021)

• Peatland land use (Habib and Connolly, 2023)



New Irish peat soils map (Gilet et al., 2024)


٠


What happens when we drain peatlands?

Drained peatland under grassland

Benefits of water table management

(Evans et al., 2021)

Importance of science informing policy

Journal of Environmental Management 344 (2023) 118391

Contents lists available at ScienceDirect

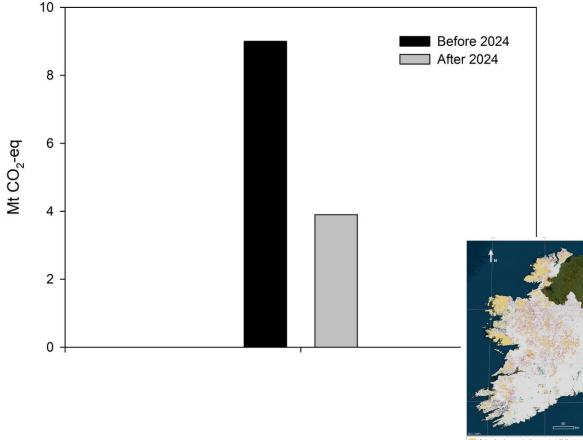
Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

Review

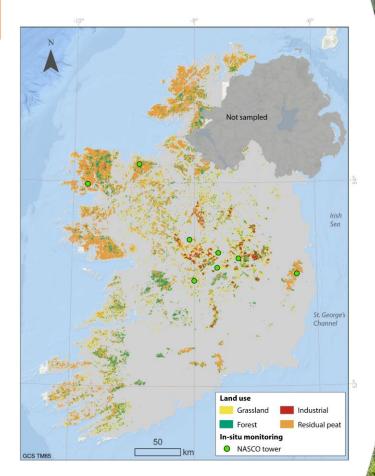
Drainage status of grassland peat soils in Ireland: Extent, efficacy and implications for GHG emissions and rewetting efforts

P. Tuohy^{a,*}, L. O' Sullivan^b, C.J. Bracken^b, O. Fenton^b


^a Animal and Grassland Research and Innovation Centre, Teagase, Moorepark, Fermoy, Co. Cork, P61 P302, Ireland
^b Environmental Research Centre, Teagase, Johnstown Castle, Wexford, Co. Wexford, Y35 Y521, Ireland

A review of greenhouse gas emissions and removals from Irish peatlands

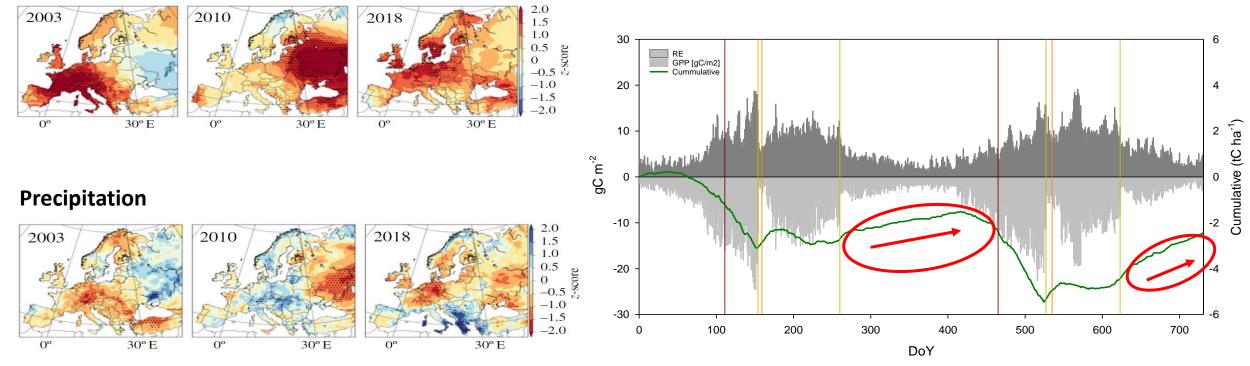
Elena Aitova¹, Terry Morley¹, David Wilson², Florence Renou-Wilson³


¹Discipline of Geography and The Ryan Institute, University of Galway, Galway, Ireland ²Earthy Matters Environmental Consultants, Glenvar, Letterkenny, Co. Donegal, Ireland ³School of Biology and Environmental Science, University College Dublin, Ireland

Peatland land use type	Nutrient status	CO2 EF (t C ha ⁻¹ y ⁻¹)		CH4 EF (kg C ha ⁻¹ y ⁻¹)		N ₂ O EF (kg N ha ⁻¹ y ⁻¹)	
		Tier 1	Irish	Tier 1	Irish	Tier 1	Irish
Industrial cutaway	Nutrient-poor	2.8 (1.1 - 4.2)	1.21 (0.4 - 2)	4.6 (1.2 - 8.3)	0	0.3 (0 - 0.6)	0
Industrial cutaway	Nutrient-rich		2.18 (0.86 - 3.5)		-0.3 (-0.8 – 0.3)		0
Domestic cutover	Nutrient-poor		1.59 (1.2 - 2.0)		4.6 (-0.4-9.6)		0
Grassland	Nutrient-poor	5.3 (3.7 – 6.9)	1.30 (0.04 - 2.55)	1.4 (0.5 – 2.1)	8.82 (2.63 – 15.02)	4.3 (1.9 - 6.8)	0
Grassland, deep-drained	Nutrient-rich	6.1 (5.0 - 7.3)	5.08 (3.6 - 6.57)	12 (1.8 - 21.8)	-0.75 (-2.2 – 0.72)	8.2 (4.9 – 11)	1.6
Forestry	Nutrient-poor	2.6 (2.0 - 3.3)	1.68	1.9 (-0.5 – 4.2)	NM	2.5 (-0.6 - 6.1)	NM
Near-natural	Nutrient-poor		-0.33 (-0.8 - 0.1)		54.7 (22.4 - 86.9)		NM
Rewetted, peat extraction	Nutrient-poor	-0.23 (-0.6 - 0.2)	-0.23 (-0.8 - 0.4)	92 (3 – 445)	79.8 (50.4 - 109)	0	0
Rewetted, grassland	Nutrient-poor		0.85 (-1.6 - 3.3)		68.1 (20.9 - 115.2)		0
Rewetted, peat extraction	Nutrient-rich	0.5 (-0.7 – 1.7)	3.22 (1.1 - 5.4)	216 (0 - 856)	117.9 (31.9 – 203.8)		0

Peat area based on conventional peat mapping (± 30-40 cm) Peat area based on Peat Associated Landcover Classes and conventional peak (± 10 cm) Peat area based on Peaty Solls and conventional peat (± 10 cm) Peat area based on Peat Associated Landcover Classes and Peaty Solls (± 10 cm)

Current research



Need for climate resilient solutions

Temperature

Peters et al. (2020)

Annual Cumulative NEE

2020: **-1.82** t C h⁻¹ 2021: **-0.60** t C ha⁻¹

- Grasslands on drained organic soils are a source of carbon
- Carbon in these ecosystems is vulnerable to management and climate
- Emissions can be reduced through changes in management intensity and water table management
- Ongoing research will further inform policy as impacts of hydrology on biogeochemistry and agricultural productivity are explored
- Opportunities for alternative production systems and the development of a community peatland code