

How effective are slurry additives at reducing gaseous emissions? **Slurry storage (tank)**

Slurry acidification & amendments

Amendment	Impact on gaseous losses / Efficacy			
	Ammonia	Methane	Nitrous oxide	Mode of action
In storage				
Alum	82% ↓	96% ↓	N/A	Reduce slurry pH
Ferric chloride	96% ↓	98% ↓	N/A	Reduce slurry pH
Acetic acid	73% ↓	94% ↓	N/A	Reduce slurry pH
Sulphuric acid	85% ↓	95% ↓	N/A	Reduce slurry pH
Sugar beet molasses	~65% ↓	~ 80% ↑	N/A	Reduce slurry pH
Apple pulp	~50% ↓	~ 30% ↑	N/A	Reduce slurry pH
Grass silage effluent	~40% ↓	~60% ↓	N/A	Reduce slurry pH
Spent brewer's grain	~25% ↓	~150% ↑	N/A	Reduce slurry pH
Commercial A	-	-	N/A	Microbial
Commercial B	-	-	N/A	Microbial
Commercial C	-	-	N/A	Microbial
Commercial D	-	10% ↓	N/A	Reduce slurry pH
GEBTech treatment	28% ↑	31%↓	85%↓	Chemical reaction
landspreading				
Alum	92% ↓	-	202% ↑	Reduce slurry pH
Ferric chloride	54% ↓	99% ↓	154% ↑	Reduce slurry pH
Polyaluminium chloride	65% ↓	121 ↓	29% ↓	Reduce slurry pH
Biochar	77% ↓	_	62% ↓	Adsorb ammonium
Gypsum	8% ↑	N/A	N/A	Reduce slurry pH
Sulphuric acid	23% ↓	N/A	N/A	Reduce slurry pH
Biochar	8% ↓	N/A	N/A	Adsorbs ammonium
GEBTech treatment	2%↓	88%↓	36%↑	Chemical reaction

- offs
- formulation

Take home messages

Slurry acidification is very effective at reducing emissions but requires H & S considerations.

Other additives that absorb slurry N e.g. biochar can offer smaller reductions

Large variability between effectiveness of various additives for reducing emissions and potential trade

Prior to purchase, consider scientific backing of any