

LowAmmo: measuring ammonia in agriculture

TEAGASC researchers are working to quantify NH₃ emissions from agriculture with a view to meeting Ireland's National Emissions Ceilings Directive targets.

The ammonia challenge

Ammonia (NH₃) volatilisation from nitrogen (N) fertiliser and the manure management chain (housing, storage and land spreading) reduces N use efficiency and represents a substantial economic loss of N on Irish farms. Ammonia volatilisation also contributes to eutrophication and acidification of natural ecosystems and indirect emissions of the greenhouse gas nitrous oxide (N₂O). Ireland has committed to reducing national NH₃ emissions by 5% by 2030 compared to 2005 levels under the revised National Emission Ceilings Directive. Meeting these emission reduction targets along with achieving Food Wise 2025 targets presents a significant challenge for Irish agriculture, which accounts for >98% of national NH₃ emissions. The majority of Irish NH₃ research up to now has focused on emissions from slurry land spreading and fertiliser N applications.

LowAmmo

The 'LowAmmo' project was established in 2013 and aims to close some of the gaps in knowledge related to NH_3 emissions from Irish agriculture. The project's specific objectives are:

- 1. To quantify NH₃ emissions associated with cattle housing, cattle excreta deposition on pasture and yards, and slurry storage.
- 2. To quantify the abatement potential of NH₃ mitigation strategies for yards and slurry storage.
- 3. To develop models to estimate NH₃ emissions from Irish farms.

Developing ammonia emission factors for Irish cattle housing

NH₃ emissions from livestock housing are derived from two sources within the house: the housing floor; and, internal slurry storage tanks. Emissions arise from the mixing of excreted dung and urine in these two areas. Urea-N present in urine is rapidly hydrolysed to NH₄⁺ and NH₃ by the enzyme urease, which is present in dung. This hydrolysis reaction also leads to an increase in pH, which favours the conversion of NH₄⁺ (solid) to NH₃ (gas), thus leading to NH₃ emissions. During the project, NH₃ emissions were measured from four livestock houses in the south of Ireland over three winters (2014)

to 2017) using passive flux samplers (Ferm tubes). The overall mean NH₃ emission factor (EF) from the four houses was 15.6g NH₃-N/LU/d or 12.5% of total ammonical N (TAN) excreted. This is somewhat lower than the current EF of 31% of TAN excreted used in Ireland's national NH₃ inventory and highlights that NH₃ emissions from cattle housing in Ireland may be over-estimated.

Mitigation of ammonia emissions from concrete yards

Deposition of livestock urine and dung on concrete farmyard surfaces (collecting yards and livestock handling yards) has been identified as a significant source of NH₃ emissions, contributing up to 8% of Ireland's agricultural NH₃ emissions. Experiments were conducted on a livestock handling yard in August 2016 to investigate the effectiveness of different yard-cleaning options (pressure washing or scraping using a hand-held scraper) used at different time intervals (one hour or three hours after excreta deposition) at reducing NH₃ emissions. The NH₃ emissions were measured using wind tunnels.

Pressure washing at one hour was the most effective at reducing NH_3 emissions (91% reduction). Pressure washing at three hours reduced emissions by 80%, while scraping after one hour and three hours reduced emissions by 78% and 54%, respectively. Pressure washing of farmyards as soon as possible after use by livestock should be encouraged in order to minimise NH_3 emissions from this source.

Ammonia emissions from excreta deposited on pasture

Over 60% of livestock-excreted N is deposited on pasture annually in Ireland. The aim of this task within the project was to create disaggregated NH₃ emission factors for urine and dung applied to pasture, and investigate the effect of amending urine patches with N-stabilised fertiliser formulations over two grazing seasons. Urine and dung were applied with and without a nitrification inhibitor (dicyandiamide) and urease inhibitor (N-(butyl) thiophosphoric triamide) on grassland at Teagasc Johnstown Castle. Dung had a lower NH₃ EF (3.8% total N applied lost as NH₃) compared to urine (12% total N applied lost as NH₃). The N stabiliser formulations applied to urine patches.

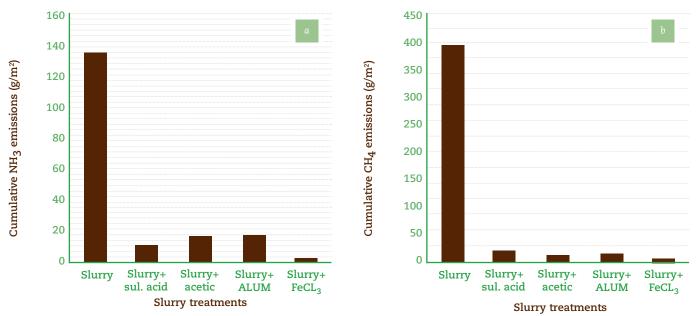


FIGURE 1: Ammonia emissions (a) and methane emissions (b) from stored cattle slurry with and without amendments.

Reducing ammonia and greenhouse gas emissions from slurry storage

Cattle slurry was amended with sulphuric acid, acetic acid, alum, and ferric chloride (FeCl₃) until a target pH of 5.5 was attained. A control, with no amendment, was also included. The study was conducted using 1.6L-capacity containers, which were stored at 8.6°C. Ammonia, N₂O, carbon dioxide and methane emissions from the slurry were monitored for 83 days. The addition of amendments to the slurry reduced NH₃ emissions by 86-97% (**Figure 1a**). Alum and FeCl₃ produced the highest reductions. The amendments reduced methane emissions by 94-98% relative to the slurry without amendments, with FeCl₃ attaining the highest reductions (**Figure 1b**). Carbon dioxide emissions were similar across all treatments and N₂O emissions were negligible from both the control and amended slurry.

FIGURE 2: New slurry storage facility at Teagasc Johnstown Castle showing: (a) one of twelve 1m³ concrete storage tanks; (b) dynamic chamber used to measure ammonia and greenhouse gas emissions; and, (c) overview of the facility.

Conclusions and future research

The data collected on the LowAmmo project will feed directly into the refinement of Ireland's national NH₃ inventory. The mitigation options investigated in this project will also provide valuable data for the future development of the NH₃ marginal abatement cost curve (MACC) for Irish agriculture.

The recent development of the new Johnstown Castle slurry storage facility will increase the capacity to investigate the effectiveness of NH₃ and greenhouse gas mitigation strategies across the entire manure management chain. This facility contains twelve 1m³ concrete slurry storage tanks, which have been designed to simulate the storage of liquid slurry indoors in slatted storage tanks (**Figure 2**).

Acknowledgement

This research was funded by the Irish Department of Agriculture, Food and the Marine (Project no. 13/S/430).

Authors

William Burchill

Post-Doctoral Researcher, Teagasc Crops, Environment and Land Use Programme, Johnstown Castle, Co Wexford Correspondence: william.burchill@teagasc.ie

Gary Lanigan

Principal Research Officer, Teagasc Crops, Environment and Land Use Programme, Johnstown Castle, Co Wexford

Ian Kavanagh

Walsh Fellow, Teagasc Crops, Environment and Land Use Programme, Johnstown Castle, Co Wexford

