Overview of new MACC – methodology, key findings and potential impact

Cathal Buckley, Dominika Krol, Gary J. Lanigan, Trevor Donnellan, John Spink, Kevin Hanrahan, Andy Boland, Patrick Forrestal, James Humphreys, Pat Murphy, Nuala NiFhlatharta, Donal O'Brien, Tom O'Dwyer, Frank O'Mara, Karl Richards, Laurence Shalloo, David Wall, Sinead Waters

TEAGASC

RESEARCH

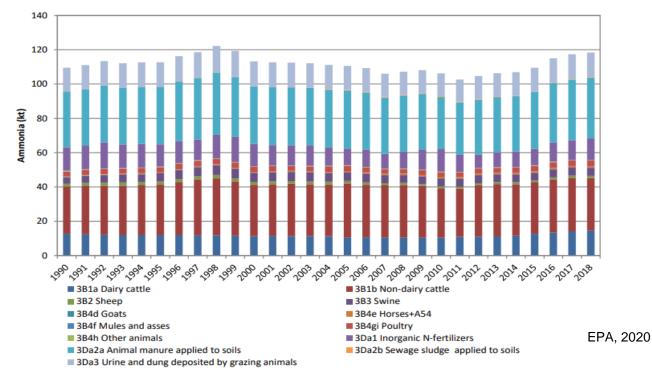
INSIGHTS

OMORROW'S AGRI-FOOD SYSTEM

Editors: Cathal Buckley & Dominika J. Krol

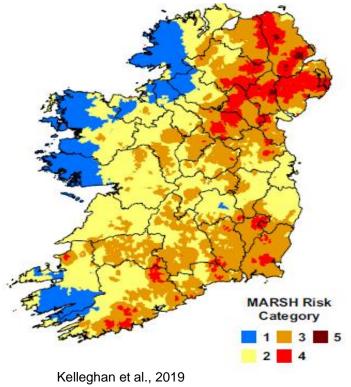
Overview of the presentation

- Ammonia Introduction and Challenges
- MACC Methodology
 - Emission factors
 - Activity data
- Example of implementation of abatement pathway
- Results of mitigation
- Impact on national emissions profile

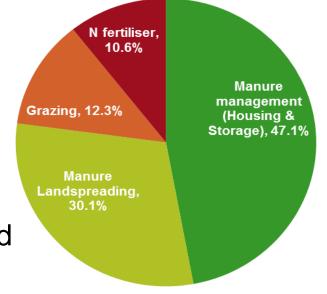


Importance of ammonia

- 99% ammonia produced by agriculture
- Negative impacts on health and ecosystems
- Regulated by the National Emissions Ceiling Directive (NECD) and Habitats Directive



Importance of ammonia


Importance of ammonia

Ammonia challenge

- In breach of NECD since 2016
- 1% reduction relative to 2005, currently estimated at 112.13 kT NH₃ to be achieved in the 2020 commitment period
- 5% reduction relative to 2005, currently estimated at 107.5 kT NH₃ to be achieved in the 2030 commitment period

Ammonia challenge

MACC Methodology

- MACC Marginal Abatement Cost Curve
- Emissions = activity data x emission factors (EFs)
- Activity level scenarios 2021-2030 (FAPRI model)
- Emission factors from the EPA national inventory model (Duffy et al., 2020)

Emission factors

- Outlined for each measure in Chapter 4
- EFs in baseline vs EFs in mitigation

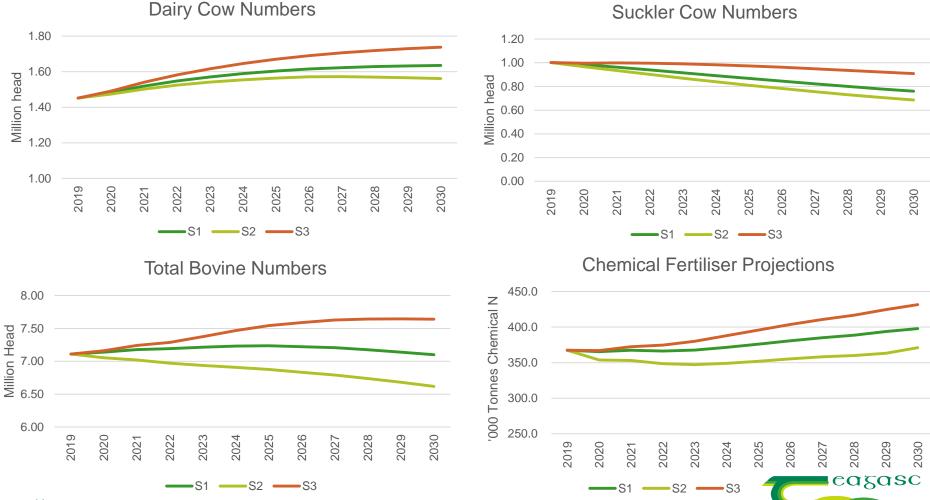
Emission factors

18.3%

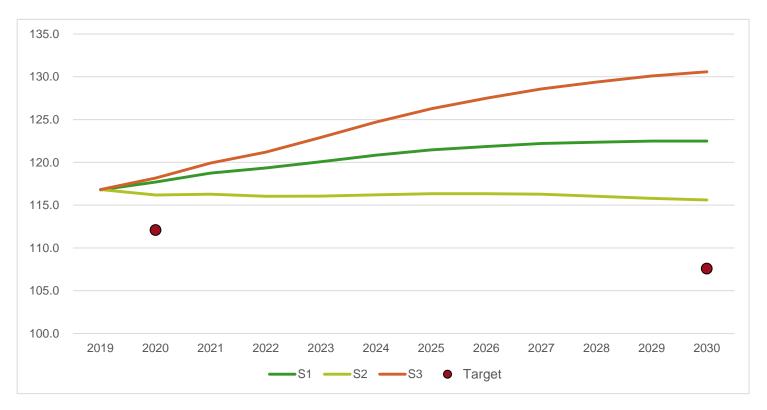
10 Teagasc Research Insights, 7th October 2020

Emission factors

Mitigation Measures – 13 in Total


Fertiliser

- 1. Protected urea (Ag. Climatise pathway 100% urea and 50% CAN to PU by 2025)
- 2. Liming (1.5% pa.)
- 3. Clover (25% of Dairy farms)
- Bovine
 - 4. Low Emissions Slurry Spreading (Ag. Climatise pathway 90% by 2030) by contractors
 - 5. Crude Protein reduction in feeds (Dairy cow 1%)
 - 6. Covering of slurry stores (67% increasing to 100% by 2030)
 - 7. Adding slurry amendments (30% by 2030)
- Pigs
 - 8. Low Emissions Slurry Spreading (Ag. Climatise pathway 90% by 2030) by contractors
 - 9. Crude Protein reduction in feeds (Finisher pigs 1.8%)
 - 10. Covering of slurry stores (87% increasing to 100% by 2030)
 - 11. Adding slurry amendments (30% by 2030)
- Poultry
 - 12. Drying of Poultry Manure (100% by 2030)
 - 13. Adding slurry amendments (30% by 2030)


Activity level scenarios – FAPRI Ireland

- 3 Activity level scenarios (S1 to S3)
 - FAPRI Ireland provided to EPA in Q3 2019
 - BAU, low activity, high activity sensitivity analysis
- S1 Business as usual
 - No change under CAP
 - Soft Brexit
- S2 Lower activity level
 - No change under CAP
 - Hard Brexit
- S3 Higher activity level
 - CAP Coupled payment on suckler cows
 - Soft Brexit

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Ammonia emissions – no mitigation

Example measure – Protected Urea

4.1 Fertiliser Measures

4.1.1 Protected Urea

Description

Adoption of the Ag-Climatise proposal....

Table 4.1: Results Protected Urea Fertiliser Mitigation Pathway

Abatement in 2030	Cost in 2030 (€'million)	Average per annum abatement	Average per annum cost 2021-2030	Average cost
(kilotonnes NH ₃)		2021-2030	(€′million)	efficacy
		(kilotonnes NH3)		(€ per kg abated)
3.27	-€9.25	3.11	-€7.15	€2.30

Rationale

Outline of scientific evidence behind pathway......

Assumptions

Mitigation

Adoption of the Ag-Climatise proposal....

Cost

Cost is based on the quantities and price of different fertilisers

National emission inventory capture mechanism

Recorded through sales of fertilisers

Barriers to uptake Any constraints?

Modelling Approach - Protected Urea Example

 S1 Activity Level Baseline – No intervention / business as usual

Ag. Climatise - Protected Urea Pathway				Ye	ar						
Baseline Projections - S1	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Total Chemical N ('000 tonnes)	367.5										
Straight CAN ('000 Tonnes - Chemical N)	135.5										
High CAN - Low PK Compounds ('000 Tonnes - Chemical N)	123.3										
High PK Compounds ('000 Tonnes - Chemical N)	55.4								-	59.9	
Straight Urea ('000 Tonnes - Chemical N)	47.6										
Protected Urea ('000 Tonnes - Chemical N)	1.8										

Protected urea mitigation pathway - Assumptions

Assumptions - Mitigation Potential	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
% Quantity Substitution - Protected Urea for Straight Urea	33%	66%	100%								
% Quantity Substitution - Protected Urea for Straight CAN	10%	20%	30%	40%	50%		50%				
% Quantity Substitution - Protected Urea for high CAN - Low PK Compounds	10%	20%	30%	40%	50%				50%		

Fertiliser projections	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030		
Total Chemical N ('000 tonnes)	366.4											
CAN - Straight ('000 Tonnes - Chemical N)	121.9											
CAN - Low PK Compounds ('000 Tonnes - Chemical N)	111.0											
High PK Compounds ('000 Tonnes - Chemical N)	55.4											
Straight Urea ('000 Tonnes - Chemical N)	31.4											
Protected Urea ('000 Tonnes - Chemical N)	42.3	│										

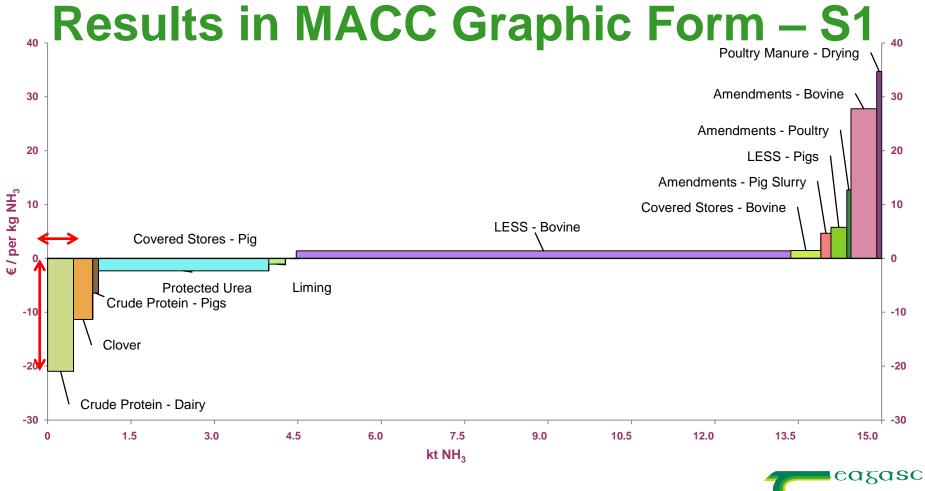
Protected urea pathway - mitigation

Change to S1 fertiliser activity level baseline with protected urea pathway adopted – Effect on NH3 (benefit side)

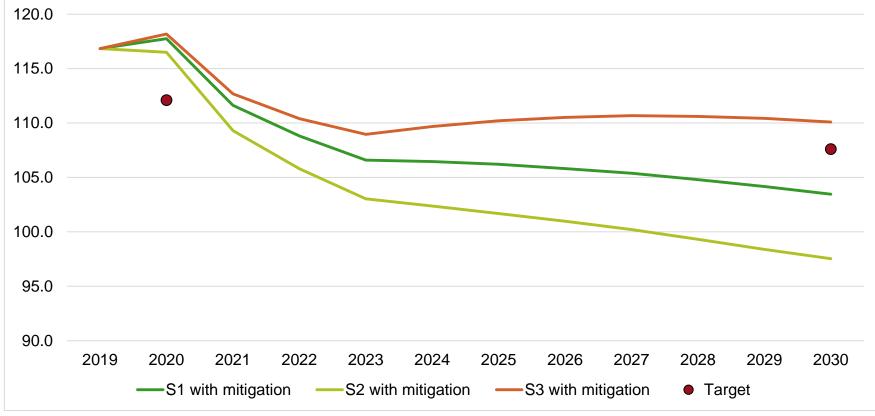
Emission Factors (NH3 - g per kg)	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
CAN - Straight	8										
CAN Compounds	15	·									
Straight Urea	155										
Protected Urea	33										
Abatement Reduction / Increase (kilotonnes NH3)	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
Substitution Protected Urea for Straight Urea - NH3 Reduction	-2.0)	-6.4	
Substitution Protected Urea for Straight CAN - Increase in NH3	0.4								→	1.9	
Substitution Protected Urea for Low PK Can Compounds -	0.2								→	1.3	
Increase in NH ₃										\frown	
Total Net Reductions incl. NUE (kilotonnes NH3)	-1.38								>	(-3.27	
										\sim /	

Protected urea pathway - cost

 Change to S1 fertiliser activity level baseline with protected urea pathway adopted – Effect on cost side


Assumptions - Costs	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030					
Chemical N savings ('000 tonnes) versus baseline	-1.11														
€ per kg Straight CAN	€0.89														
€ per kg in high CAN Compounds	€0.87														
€ per kg straight urea	€0.72														
€ per kg protected urea	€0.80								·>	€0.80					
Cost (CAN, Urea, P. Urea) - Baseline Fertiliser (€'million)	€263.5								`	€285.					
Cost (CAN, Urea, P. Urea) -															
Ag. Climatise Fertiliser Scenario (€'million)	€261.5									5					€276.
Total cost / benefit €'million (negative sign is a saving)	-€2.05	5													

Protected urea pathway - cost effectiveness


Ag. <u>Climatise</u> - Protected Urea Pathway	Year										
Assumptions - Mitigation Potential	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	Total
Total Net Reductions incl. NUE (kilotonnes NH3)	-1.38	-2.81	-4.19	-3.65	-3.09	-3.13	-3.17	-3.20	-3.24	(-3.27)	-31.13
Assumptions - Costs										\times	\sim
Total cost / benefit €'million (negative sign is a saving)	-€2.05	-€3.41	-€5.13	-€6.91	-€8.74	-€8.85	-€8.95	-€9.04	-€9.15	(-€9.25)	-€71.49
Cost effectiveness										\bigcirc	$ \bigcirc $
€ per kg NH3 abated (negative sign is a saving)	-€1.49	-€1.21	-€1.22	-€1.89	-€2.83	-€2.83	-€2.83	-€2.83	-€2.83	-€2.83	-€2.30

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Ammonia emissions with mitigation

Achieving impact - Caveats Uncertainty around activity levels (Brexit, Covid-19)

- Adoption rates
- Efficiency gains will lead to an associated reduce in chemical N fertiliser at farm level
- Synergistic and antagonistic effect of measures on other environmental dimensions (GHG, water quality, biodiversity)

Take home messages

- 13 Measures explored
 - Significant overall abatement potential
 - All predicated on improving NUE and reducing N use
 - Diverse range of abatement potential (0.08 to 9.04 kt)
 - 6 measures cost negative (-€22.21 million) & 7 cost positive (€33.07 million)
- 80% of abatement can be achieved by 2 of the pathways
 - LESS for bovines (€1.40 per kg NH₃ abated)
 - Switch to protected urea fertiliser (- $\in 2.30$ per kg NH₃ abated)

https://www.teagasc.ie/media/website/publications/2020/NH3-Ammonia-MACC.pdf

THANK YOU FOR YOUR ATTENTION

