

PHASE 2 - FARM WALK 20 March 2014 Mark Maxwell, Ballynagore, Mullingar, **Co Westmeath**

Business, Environment Technology through **Training Extension Research**

A Teagasc/Irish Farmers Journal initiative, supported by industry sponsors

Welcome note	3
➡ Farmer focus	4
⊃Farm layout	5
⊃ Profit monitor	6
⊃Dairy beef budget	7
➡ Grassland performance	8
Spring rotation planner	10
⊃ Soil sampling	12
⊃BETTER tips	14
➡ BETTER steps	15
≎Phase 2 participants	16

The Teagasc/Irish Farmers Journal BETTER Farm Phase 2 management team (clockwise, from top left): Adam Woods, Paul Crosson and Paul Maher, Teagasc, Darren Carty and Kieran Mailey, Irish Farmers Journal, and programme advisers Catherine Egan, Peter Lawrence and Alan Dillon.

Exclusive content in the Irish Farmers Journal in print and online at www.farmersjournal.ie

A Teagasc/Irish Farmers Journal initiative, supported by industry sponsors

Edited by: Darren Carty. Production/artwork: Brian Murphy. Printer: Johnswood Press (info@johnswoodpress.ie)

n behalf of Teagasc and the management team of the Teagasc/Irish Farmers Journal BETTER Farm beef programme. I would like to welcome you to today's event on Trevor Minion's farm. This is the second in a series of 10 open days taking place in 2014 on farms participating in the programme. I would like to acknowledge the support of our sponsors and, in particular, the Irish Farmers Journal who have been instrumental to the programme's success over the past five years.

We hope that you will find today's walk both informative and practical and hope that you can take home some messages from this farm to improve the profitability of your own farm.

Increasing output has been a major focus of the farm plan and is very important in a drystock system. Achieving this output cheaply is equally important and Trevor has paid extra attention to correct grassland management during the year to ensure a long grazing season and maintaining quality swards for grazing.

This farm is the only farm in the programme operating a dairy calf-to-beef enterprise. Trevor has worked this system well which has increased the stocking rate and, in turn, gross margin. Both Trevor and his son Andrew have been very open to taking on new ideas and advice and we commend them for this, and thank their family for opening up their farm today. With Trevor's management ability and commitment, we have no doubt that he will continue to push his business in the future and we look forward to helping him on this journey.

Adam Woods, BETTER Farm beef programme manager

Measure	Baseline 2011	Target 2015
System	Suckler / calf-to-beef	Suckler / calf-to-beef
Stocking rate (LU/Ha)	1.69	2.4
Land base (adj. Ha)	36.7	40
PURCHASES		
Purchases	Dairy calves and replacements	Dairy calves and replacements
PHYSICAL OUTPUT		
Liveweight output (kg/Ha)	644	987
FINANCIAL SYSTEM		
Output value (€/Ha)	1,211	2,012
Variable costs (% of output)	€766 (37%)	€905 (45%)
Gross margin (€/Ha)	445	1,107

PHYSICAL SYSTEM

Expaning the suckler herd

ark Maxwell farms in Ballynagore, Co Westmeath, and is married to Aoife. They have five children, Rachel, Marie Claire, Louise, Kathryn and Robert. Mark joined the BETTER Farm programme in 2012 and operates a suckler to finishing unit with a split autumn and spring calving herd.

The farm, located beside the village of Ballynagore, extends to 107ha. Ninety-four hecatres are owned and split in three separate locations. The main grazing block of 52ha is located at an outfarm approximately one mile from the home farm.

The home farm consists of 28ha and is primarily used to rear spring calving cows and calves. The farm operates 12ha of tillage also, with barley grown for feeding on the farm.

Mark's cow type is very much focused on good maternal traits and utilising first-rate milk yield potential (cows are all linked back to dairy crossbreeding) to achieve good weight for age in progeny.

Sire selection is mainly targeted to terminal sires that add size, shape and good growth potential to progeny. This is achieved through a mixture of AI and Charolais stock bulls.

Male progeny are predominantly slaughtered as steers at an average of 420kg carcase weight, while heifers average 360kg.

In 2013, the farm slaughtered 44

steers and 44 heifers. Some maternal sires were used to start breeding a percentage of replacements from within the herd.

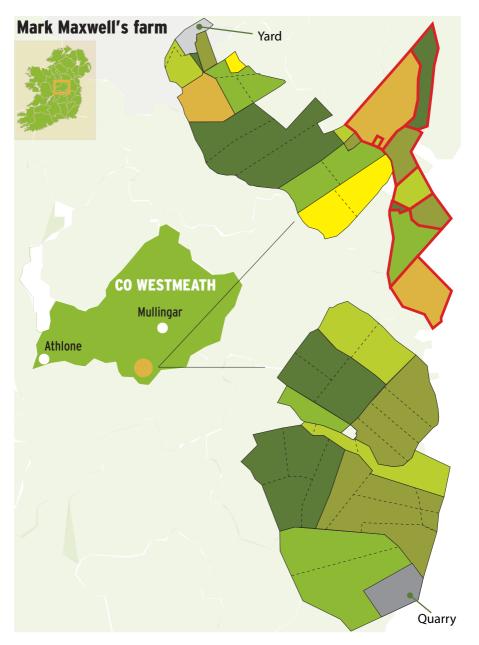
Numbers are increasing on the farm with cow numbers up to 100 in 2014. The aim is to increase to 120 cows by 2015 with all progeny slaughtered off the farm.

Traditionally, replacements have been purchased with a preference for Hereford and Angus dairy crosses. A small number of maternal sires have also been used to breed a percentage of replacements from within the herd.

This increase in output, in combination with improved technical efficiency, should improve the farm's gross margin. Better grassland management is a large aspect of improving technical efficiency.

This will be achieved through measuring grass on a weekly basis, using more paddocks and moving stock to fresh grass more regularly.

Mark had been measuring grass on Excel for the last 12 months but has now begun using Pasturebase Ireland, which will accurately


record weekly and annual growth data for individual paddocks on the farm.

In 2013, Mark grew 9.6t of grass dry matter per hectare and the plan for 2014 is to increase this by at least 10%.

66

Better grassland management is a large aspect of improving technical efficiency.

20 March 2014 | Teagasc/Irish Farmers Journal BETTER farm programme | 5

Investing for increased output

farm programme, Mark's profit monitor results have shown a steady increase in output value. The farm has increased its stocking rate by 7% since 2012.

While liveweight output has increased by 1% since 2012, the value of Mark's output has increased by 2% since 2012. While the increase has been minimal, it has to be remembered that 2012 and 2013 were extremely difficult year's weather-wise, which made increasing the stocking rate and output on the farm very difficult.

Fertilizer costs have shown the biggest increase in 2013. The farm is generally good for phosphorus (P) levels, apart from two or three areas, but potassium (K) levels are very low as identified in soil test results taken at the end of 2012 (see pages 10-11).

A significant cost was, and will

66

While these costs may rise, the extra output generated should more than cover any increased costs be, involved in rectifying this. Reseeding poorly performing paddocks has also contributed to fertilizer costs.

Costs in improving grassland productivity (fertilizer mainly) and other costs such as vet and contractor will increase slightly again in the future as stocking rate increases.

This is due to higher requirements for slurry spreading and silage harvesting along with higher numbers of stock for dosing, testing etc. While these costs

may rise, the extra output generated should more than cover any increased costs.

Programme adviser Alan Dillon

Table 1: Target performance by end of 2015				
	2012	2013	2015 (target)	
Stocking rate	1.57	1.68	2.11	
Output kg/ha	504	510	763	
Output €/ha	€1,108	€1,138	€1,633	
Gross margin €/ha	€630	€662	€1,053	

Table	able 2: Profit monitor yearly comparison				
Year	Area farmed (ha)	Stocking rate LU/ha	Lwt output kg/ha	Value of output €/ha	
2011	94.5	1.47	462	866	
2012	91.8	1.57	504	1,108	
2013	95	1.68	510	1,138	

6 | Teagasc/Irish Farmers Journal BETTER farm programme | 20 March 2014

Plan for profit

Mark aims to slaughter springborn steers at 24 months out of the shed and heifers at around 22 months. He is achieving very high weight gain at the second year at grass and this transpires to a high weight at slaughter. Mark is achieving a 400kg carcase at 24 months from steers, comparable with some bull beef systems. The steer system allows Mark to make maximum use of grass, while also selling on the grid and benefiting from the QA bonus.

Heifers are killed at 330kg to 360kg carcase weight at the beginning of the year, making maximum use of grass and benefitting from a short winter finishing period.

Table 3: Example production budget for a 24-month-old Charolais steer system				
Variable costs				
Cow and calf to weanling stage (8mths - 340kg@weaning)	€500			
Dose IBR/Rumen fluke/ worms	€10			
First winter (silage +2kg of ration - 120 days - 400kg turnout)	€126			
Dose at grass Rumen fluke/Liver fluke/worms	€10			
2nd grazing season (210 days - 600kg at housing)	€147			
Winter finishing period (108 days - 730kg @ slaughter)	€216			
Sale assuming 730kg lwt @55% killout = 400kg carcase grading R=3+				
Price per kg carcase				
Base price (current)	€4.00			
Quality assurance bonus	€0.12			
Total price per kg carcase	€4.12			
Sale price	€1,648			
Margin per head	€639			
Sensitivity analysis				
Beef price -10%	-€160			
Ration price +10%	-€20			
Net margin per head	€459			

Assumptions: Home mixed ration: barley, soya hulls, soya bean meal; silage 70 DMD costing €28/t fresh weight; Grazed grass costing €0.07/kg DM; Steers fed average 6kg per day over finishing period, 2kg per day over first winter

Feed €/ha	Fert/lime €/ha	Vet €/ha	Contractor €/ha	Other €/ha	Gross margin €/ha
160	79	48	39	97	479
137	98	70	29	117	630
114	143	74	6	80	662

Spring rotation planner

he spring rotation planner (SRP) is a management tool to remove guesswork from decision-making during this period. The planner allocates a proportion of the farm each day to the herd from turnout to grass in spring up to magic day (where growth rate equals demand), thereby rationing grass supply in spring until growth exceeds demand.

The SRP technique, in addition to weekly grass measurement, will ensure that the first rotation finishes on the correct date and the herd does not run out of grass at critical times of the year.

Mark fills out a simple planner each year to aid in grassland management.

Table 1: Spring rotation targets		
Total hectares to be grazed	94	
Graze 40% by 27 March	37	
Graze 70% by 10 April	66	
Graze 100% by 20 April	94	

As turnout date is dictated by grass supply and ground conditions, the farm's turnout date varies slightly from year to year.

This year, given the wet start, the turnout date on this farm was slightly later than anticipated, on 7 March.

With magic day estimated at around 12 April, this gives six weeks until the second rotation has to begin.

Put simply, Mark must aim to graze roughly 50% of his farm, including silage ground, in the first three weeks so as to hit his target of 100% by 12 April.

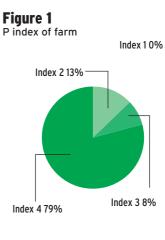
Table 1: Grazing options spring 2014 based on turnout date and availability of shage area for grazing				
Graze 50% of paddocks				
1 March				
Graze 25% of grazing paddocks				
1 March				
Graze 100% of grazing paddocks				
1 March				
Graze all silage area				
1 March				
Graze 100% of grazing paddocks				
1 April				

Table 1: Grazing options spring 2014 based on turnout date and availability of silage area for grazing

Graze all silage ground	Graze remaining 50% of paddocks	Start second rotation
20 March	10 April	20 April
Graze all silage ground	Graze remaining 75% of paddocks	Start second rotation
12 March	1 April	20 April
		Start second rotation 20 April
Graze all paddocks	Graze all silage ground	Start second rotation
27 March	15 April	1 May

Il owned grassland was soil tested in 2013. Table 1 gives a breakdown of soil sample results by paddock. Soil pH on this farm is naturally quite high ranging from 6.49 to 7.26. Soil that has a pH maintained between 6.3 to 6.5 will release 60-80kg more nitrogen per hectare than soils with a pH of 5.0. This represents a saving of ϵ 60- ϵ 80/ha.

As can be seen from Figure 1, approximately 79% of the farm is index 4 for Phosphorus (P). Phosphorus is very important for crop establishment and root/ growth development and plays an important role in the nutrition of livestock.


As concentrates fed to livestock will contribute to the P usage on the farm, there is no allowance to spread chemical P on the farm. 66

Soil that has a pH maintained between 6.3 to 6.5 will release 60-80kg more nitrogen per hectare than soils with a pH of 5.0 Soils at a P index 1 will produce approximately 1.5t/ha less grass dry matter compared with soils at index 3.

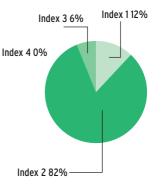

Soil Potassium (K) levels are quite low on the farm with 82% of results at index 2 and 12% at index 1.Potassium is particularly important for increasing stem strength, improving drought resistance and cold tolerance and importantly for increasing yield. Potassium fertilization is more important especially in autumn and on older grass. If adequate amounts of potassium are not available, the rate of growth and yield will be restricted. There is also a relationship between nitrogen and potassium as the response of grass to nitrogen is dependent on an available supply of potassium to allow N uptake as nitrate and conversion into proteins.

Table 1: 2013 Grassland soil sample results				
Paddocks	Area (ha)	рН	P index	K index
1	2.85	6.85	4	3
2	2.85	7.26	4	3
3	3.85	6.85	4	2
4	3.85	7.11	4	2
5	4.1	6.49	2	2
6	4.1	6.69	4	2
7	3.75	6.84	4	1
8	3.75	6.66	4	2
9	5.1	6.97	4	2
10	6.06	6.77	4	1
11	2.57	7.27	2	2
12	5.14	7.14	4	2
13	6.86	7.06	4	2
14	3.8	6.74	4	2
15	2.94	6.61	4	2
16	6.5	7.01	4	2
17	5.2	6.81	4	2
18	3.89	6.69	2	2
19	3.6	6.8	3	2
20	4.11	6.6	3	2

Table 2: Fertilizer usage in 2013			
Fertilizer	Quantity (t)	Units N	Units P
CAN	32	8,800	0
Leifi Boost (20-0-15)	50	10,000	7,500

Figure 2 K index of farm

Taking the guesswork out of slurry spreading

There are three variables which affect the rate that slurry is spread:

Discharge rate - how fast the slurry leaves the tank when spreading.
Spread width - how wide the slurry is spread behind the tank.
Forward speed - how fast or slow you drive.

Step 1. Discharge rate

Discharge rate (m³ per minute) = tanker size (m³) / time taken to empty tank (mins)

Typical tank sizes	m³
1,600 gallon	7.2
2,000 gallon	9.0
2,250 gallon	10.1
2,500 gallon	11.3

Step 2. Slurry spread width (m)

Step 3. Forward speed

Table 1: Forward speed to spread 2,000gal/ac				
Spreading width (m)	Discharge rate (m³ per min)	Forward speed		
Six metres	1.5	6.8km/h	4.0mph	
	2.0	9.1km/h	5.5mph	
	2.5	11.4km/h	6.8mph	
Eight metres	1.5	5.1km/h	3.0mph	
	2.0	6.8km/h	4.0mph	
	2.5	8.5km/h	5.1mph	
10 metres	1.5	4.1km/h	2.4mph	
	2.0	5.5km/h	3.3mph	
	2.5	6.8km/h	4.0mph	
12 Metres	1.5	3.4km/h	2.0mph	
	2.0	4.5km/h	2.7mph	
	2.5	5.7km/h	3.4mph	

EXAMPLE: Mark Maxwell BETTER Farm programme

Mark has a Belmac 2,050gal tank

If 1,000gal = 4.5m³ then, 2,050gal = 4.5 x 2.050 = 9.2m³

Discharge rate Mark's tank took 4.5 minutes to empty

Discharge (m³/min) = 9.2/4.5mins = 2m³/min

Spread width (m) Mark's tank spreads 8m wide

Forward speed

ANSWER = 6.8KM/H (4.0MPH)

Slurry spreading tip

It is important to note that the nutrient value of slurry can also vary depending on the diet of animals. This will be explained in the treatment plot demo.

SOILSAMPLES

FERTILIZER TREATMENT PLOTS UREA UREA CAN 18:6:12 40 units N/ac 24 units N/ac 24 units N/ac 24 units N/ac or or or or 1.3 bag/ac 0.9 bag/ac 0.5 bag/ac 0.9 bag/ac **SLURRY TREATMENT PLOTS**

2,000g/ac Beef finishing shed slurry **1,000g/ac** Suckler shed slurry

1,500g/ac Suckler shed slurry 2,000g/ac Suckler shed slurry

Five tips for BETTER silage

1. Plan

Decide on fields to harvest
The amount and timing of fertilizer and slurry to be spread
The approximate harvest date
Contractor to avoid delays in harvesting
Prepare silos and effluent tanks in advance

2. Target high yields

Harvesting large yields of grass dilutes production costs
Soil tests should be carried out to determine optimal rates of P, K and lime to be applied
Timely removal of livestock will allow permitted N application to promote high yields

3. Graze tight

Graze off to remove dead herbage in spring
Graze to 4cm to 5cm prior to applying fertilizer/slurry
Harvest at appropriate growth stage

4. Work fast

Fast filling and perfect sealing from air are essential for good preservation
Harvesting a clean, dry crop enhances preservation

5. Minimise exposure to air

Careful management of silo/bales and feed trough during feedout
Remove silage at a reasonably fast rate from feed face
Ensure that feed face is kept even and clean

Characteristics of good quality silage		
Variable	Ranges	
Dry matter	20% +	
pH	3.8 to 4.2	
DMD	70% +	
Crude Protein	12 to 16%	
Ammonia	<10%	
Ash	<10%	

DMD* ranges of different forages			
Forage type	DMD ranges		
Grazed grass	72% to 82%		
Leafy silage	74% to 76%		
Stemmy silage	60% to 65%		
Hay	55% to 60%		
Straw	45% to 50%		

*Dry matter digestibility

Five steps to BETTER soil fertility

1. Soil testing

Provides vital information about your soils
Is a foundation for your fertilizer plan
A standard test will give fertility status on pH, lime requirement, P and K

2. Soil pH and lime

Lime improves the availability of N, P, K, sulphur, calcium and magnesium
Lime at least every five years
Ground limestone can be spread at any time
Apply lime as per soil test report

3. Target Index 3 for P and K

Index 3 is optimum for crop growth
Only a soil test will determine P and K status
Index 4 soils (high fertility) are a resource - use them to save money on fertilizer costs
Index 1 & 2 (low fertility) need additional nutrients

4. Slurry and manures

⇒ Plan when and where slurry/manure will be best utilised
⇒ Aim to apply slurry in spring during moist, cool conditions

5. Nutrient balance

Develop a fertilizer plan for your farm
Get the best value from fertilizer and organic manure
Enhance crop yield and animal performance
Reduce environmental risks due to field loss of excess nutrients

The P index system				
	Soil P ranges (mg/l)			
Soil P index	Grassland crops	Other crops		
1	0.0 - 3.0	0.0 - 3.0		
2	3.1 - 5.0	3.1 - 6.0		
3	5.1 - 8.0	6.1 - 10.0		
4	Above 8.0	Above 10.0		

The K index system		
Soil K Index	Soil K ranges (mg/l)	
1	0 - 50	
2	51 - 100	
3	101 - 150	
4	Above 150	

Published by the Irish Farmers Journal. Printed by Johnswood Press (info@johnswoodpress.ie)