lodine residues in milk

Bernadette O'Brien D. Gleeson and K. Jordan

Milk Quality Conference 4th December 2013

Background

- lodine is an essential trace element humans and animals
- Deficiency affects reproductive capacity, brain development and growth
- Increased iodine content in food due to greater use in:
 - food processing, animal rations, antimicrobial agents
- Whole milk and dairy products contribute highest proportion of iodine to the human diet
- Human requirements:
 - US Food and Nutrition Board (2001) :
 - Adult 150 μg/day; children 110 130 μg/day
 - German nutritional reference point (DACH, 2000) :
 - Adult 180-200 μg/day; children 40 80 μg/day

Average: Adult : 170 μg/day; children : 90 μg/day

Why is milk iodine a quality issue

- Ireland major exporter of dairy products
- Milk quality is critical to maintaining and expanding this market
- Ireland is one of leading infant formula manufacturers worldwide
- Market has significant potential for growth
- Two mechanisms :
 - Milk powder as an ingredient can be sourced abroad
 - Milk powder can be produced and sourced at home
 - Preferable
 - Needs to have correct levels and balance of minerals including iodine
- Target for iodine in milk powder as an ingredient in IMF :
 - 100 μg iodine/ 100g powder
 - equates to <250 μg iodine/kg milk
- Difficult to source at times of year, e.g. concentrations of >500 µg/kg recorded for December (O'Brien *et al.* 1999)

lodine sources that can lead to high milk iodine

1. Concentrate feed

- Traditionally 1990's feeding up to ~60 mg of iodine /cow/day in early lactation
- Rogers (1999) iodine status varied in feed and animals and nonclinical iodine deficiency was common
- Deficiency defects included :
 - 10-60% calf mortality; calf thyroid enlargement; retained placenta and infertility in >10% of cows and heifers in affected herds, and lower milk yield in cows
- Diagnosis based on:
 - local knowledge, clinical signs and post-mortem findings
- Diagnosis was confirmed by
 - finding thyroid enlargement, low levels of iodine in thyroid tissue, or by low iodine levels in blood and/or feed samples
- Definitive confirmation based on :
 - dramatic response to iodine supplementation of the affected animals

lodine sources that can lead to high milk iodine

- Early 1990s 139 µg iodine/kg milk; 97% of pasture samples subnormal iodine levels
- Recommended adequate supplementation of iodine
- 12-60 mg of iodine /cow per day
 - ~12 mg of iodine /cow per day advised for routine continuous use
 - ~60 mg of iodine /cow per day advised for national use in a 5month mineral programme for dairy cows

2. Teat disinfection

- Used as a routine practice on-farm post-milking, and potentially pre-milking
- Contribution of post- disinfection iodine to milk iodine may be due to absorption through skin
- In Irish scenario same strength pre and post milking
- Pre-milking disinfection can pose a substantial risk of iodine transfer to milk
- Dependent on the degree of removal from the teats prior to cluster attachment

Effect of dietary iodine supplementation and teat disinfection on milk iodine levels

	Non-iodine teat dipping	Post milking teat dipping with iodine	Pre and post milking teat dipping with iodine	Average standard error
70 mg iodine /day	813	817	1115	39.4
30 mg iodine /day	692	982	1429	96.4
0 mg iodine /day	217	461	670	45.5

International recommendations on iodine requirements for cows

- British Agricultural Research Council 0.5mg/kg
 DM intake or approximately 10-12 mg/cow/day
- GfE: German Society of Nutrition & Physiology -0.5mg/kg DM intake or approximately 10-12 mg/cow/day (1999, 2001, 2004, 2006)
- US: National Research Council 0.6mg/kg DM intake or approximately 12-14 mg/cow/day (1989); reduced to 0.5mg/kg DM intake or approximately 10-12 mg/cow/day in 1994, 1998, 2001)

High iodine intake risks

- High milk iodine may be exacerbated by seasonal milk production
- Two situations particularly at risk:
 - Early lactation cows in a spring system
 - Winter milking cows
- Iodine routinely added to feed rations at 5-10 mg/kg
- Cows typically fed 6-7 kg/cow/day in early lactation can deliver 60-70 mg/cow/day
- Level of iodine in feed set a/c to the volume fed
- Limitation: when feed levels greater than the planned feeding rate then excessive iodine intakes

High iodine intake risks

- Excess iodine intake by cows excreted into milk &urine
- If deficient, iodine supplementation will have positive impact if not deficient, no data to indicate advantage
- Many studies in Germany (Flachowsky et al.)
- Influenced EU Commission to decrease the iodine maximum level in cow feed from 10 mg/kg to 5 mg/kg
- Interpretation of this legislation is important

EU Commission legislation

Commission Regulation (EC) No 1459/2005 of 08/09/2005 on amending the conditions for authorization of a number of feed additives belonging to the group of trace elements

the maximum content of iodine in mg/kg of complete feeding stuff with a moisture content of 12% be 5 mg/kg

(This is a reduction from 10 mg/kg Commission Regulation pre 2005)

lodine disposal

Moorepark Bolus Study - study of Dr. Stephen Butler

Study conducted in Sept Grass only for previous 3 m Sward low in iodine

• 0.26 mg/kg DM lodophor teat dip used

Control treatment

No bolus

Bolus treatment

- 2 Animax Allsure boluses
- 6800 mg l

Moorepark commercial farm study

Dr. Stephen Butler

Plasma inorganic iodine

Conclusions

- Recommended supplementation level a/c to animal research documentation is 0.5 mg/kg DM/cow/day or ~10 – 12 mg/kg/cow/day
- Supplementation levels up to 60 mg/cow/day (up to 6 x)
- Still within EU recommendations BUT causing a problem in milk
- Seasonal problem in Ireland; early lactation spring and winter milk production
- Milk iodine level is most important in areas where milk is destined for IMF
- At a limit of 250 µg/kg little flexibility
- Methodology now set up at Moorepark ICPMS
- Can monitor more closely monthly milk sample collection national perspective
- Ideally establish iodine status of the herd grass /and milk
- Supplement more precisely to meet requirement

