Effect of internal teat sealants at dry-off on SCC and mastitis

Clare Clabby

Animal & Grassland Research and Innovation Programme Teagasc, Moorepark

15th December, 2020

Background

- Blanket dry cow therapy used on 100% of Irish farms
- January 2022 EU Regulation 2019/6 on preventative use of antimicrobials in groups of animals
- Selective dry cow therapy treat only cows with infection or at higher risk of infection
- McParland et al. (2019) teat seal elevates SCC and higher risk of intramammary infection

Objective

Internal Teat Seal **alone**vs Antibiotic **plus** Internal Teat Seal

on SCC, intramammary infection and milk production

on 5 commercial farms

Herd Selection

 5-commercial spring calving in the Kerry Agribusiness region

 Monthly bulk tank SCC of less than 200,000 cells/ml for 2018 lactation

Conducted regular whole-herd milk recording

Mostly Holstein-Friesian, with some Jersey X

Cow Selection & Treatment Assignment

 Cows within herds categorised based on milk recordings from 2018 (average 6.2 recordings)

(70% of cows)

Low SCC

< 200,000 cells/ml and No clinical mastitis

(30% of cows)

High SCC

> 200,000 cells/ml or Clinical mastitis

Teat Seal alone **TS**

Antibiotic + Teat Seal **LoAB**

Antibiotic + Teat Seal **HiAB**

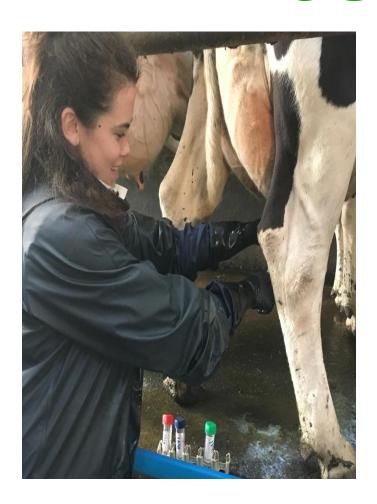
Cow Numbers Per Farm

Herd	TS	LoAB	HiAB	Total
1	73	75	51	198
2	75	68	64	204
3	67	72	90	226
4	42	41	22	105
5	40	38	24	102
Total	297	294	251	842

Data Collection

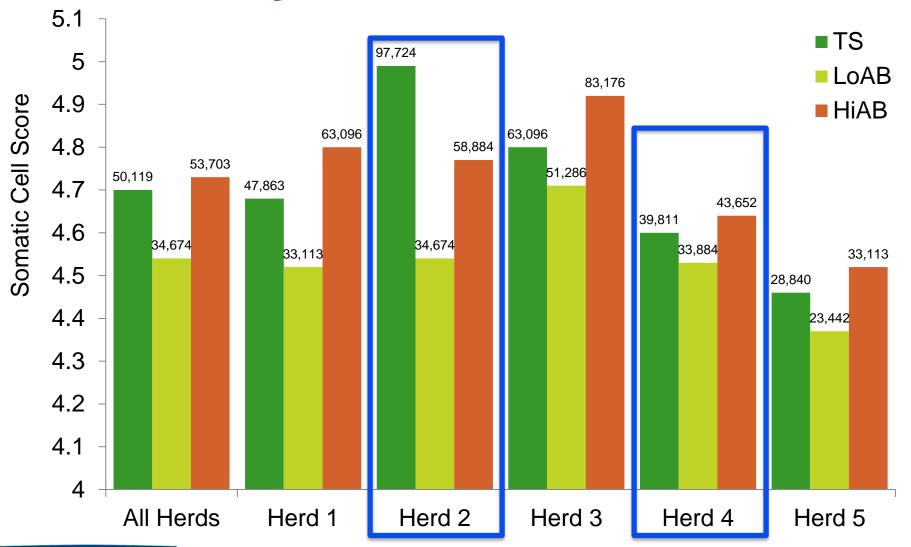
- Quarter samples collected at
 - 1. Drying-off
 - 2. Calving
 - 3. Mid-lactation
 - Analysed for bacteriology and quarter SCC

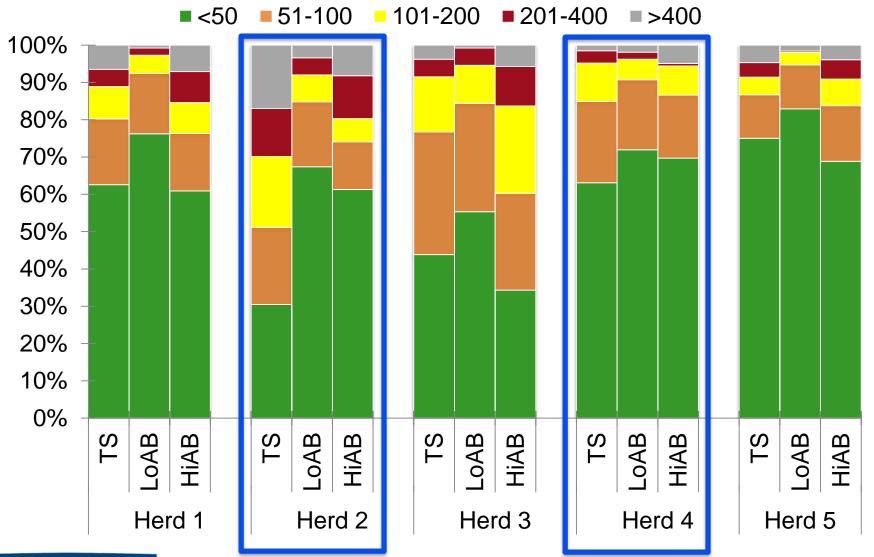
Range 5-8 milk recordings per herd


Data Analysis

- Effect treatment on SCC
 - SCC log transform to Somatic Cell Score (SCS)
 - Mixed models accounting for treatment, parity, days in milk, month of calving, herd, proportion of HO & JE genetics
- Effect of treatment on IMI
 - Presence of bacteria present/absent
 - Logistic regression accounted for same effects

Results




Test day Somatic Cell Score

Percentage of records in SCC ranges

Infection Status & Odds of Infection

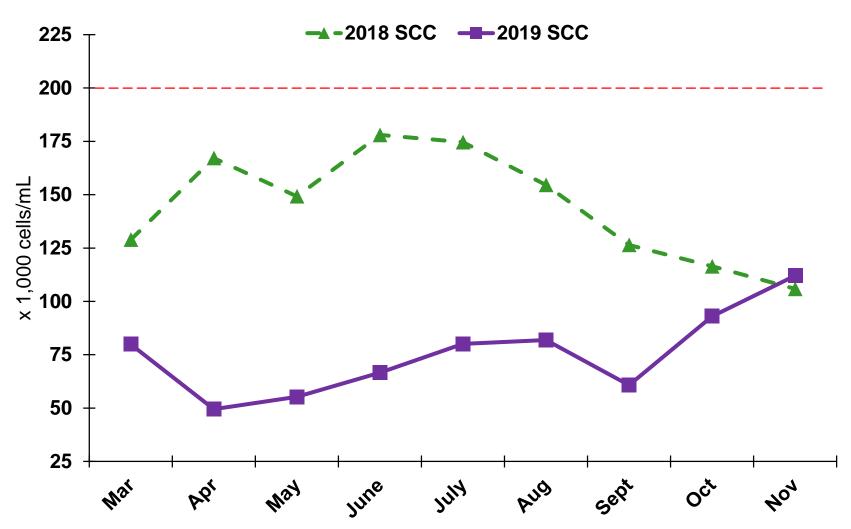
	TS	LoAB	HiAB	
Number of quarters	966	961	918	
Infected at dry-off	68	73	171	
Infected at calving	63	14	12	4.97 > LoAB 5.40 > HiAB
Infected at mid-lactation	65	14	42	5.18 > LoAB
	51	71	165	14.60 > TS
Cured at calving	31	/ 1	103	12.93 > TS
Newly infected at calving	46	12	6	3.98 > LoAB 6.40 > HiAB

Total Percentage of Cows Infected

Herd	Dry-off	Calving	Mid
1	34.4	9.6	13
2	44.4	21	25.3
3	9.2	3.4	5.9
4	25	6.9	9.5
5	19.8	2.3	5.9

Bacteria Present - Overall

Bacteria	Overall %
Staphylococcus aureus	92.1
Streptococcus uberis	4.4
Non hemolytic Staphylococcus aureus	2.5
Non hemolytic <i>Escherichia coli</i>	0.6
Streptococcus dysgalactiae	0.4


Bulk Tank SCC - Herd 2

Bulk Tank SCC - Herd 4

Summary

- Higher risk of new IMI and elevated SCC in cows using ITS vs antibiotic plus ITS
- Large between herd effect on prophylactic efficacy of ITS
- Herd selection emphasis on herd bulk tank SCC
- Cow selection emphasis on late lactation SCC
- S. aureus most common pathogen identified

Conclusion

 Internal teat seal only not as successful in herds where a high level of S. aureus was present

 Herd Bulk tank SCC and level of IMI pre dryoff could be factored into the selection of herds suitable for SDCT

Acknowledgements

Herd Owners

Questions

