Effect of milk storage duration and temperature on the microbial and manufacturing quality of mid lactation bulk tank milk

David Gleeson Aine O Connell, Bernadette O'Brien, Kieran Jordan, & Pamela Ruegg

Introduction

- Previous studies on milk storage have been undertaken on a given supply of milk stored under refrigeration conditions
- The purpose of this study was to look at the effect of storage conditions on farm (in vivo)
 - blending milk affects milk quality

Overall it is anticipated that this study will provide appropriate storage guidelines for farmers and processors alike

Storage Temperature

• EU food hygiene legislation- Directive 853/2004

 "Immediately after milking, milk must be cooled to not more than 8°C in the case of daily collection, or not more than 6°C if collection is not daily"

- Cooling to this level, rather than 4°C, should have considerable energy savings for dairy farmers but may have significant impact on milk quality with longer storage times
- Cooling to lower temperatures may be critical if storing for 3/4 days
- Observations of storage conditions from milk quality award nominees indicate that storing to lower than the normally recommended level of 4°C is practiced – average was 2.7°C

Storage duration

- A decline in milk quality may occur after a storage period of 3 days
- Milk with an initial TBC of 5,000 and stored at 4° C would be expected to have a TBC of 10,000 or 30,000 after 2 or 3 days storage & 100,000 at 4 days
- Initial milk TBC important- final TBC dependant on the initial TBC
- Improvements in the standard of cooling equipment can also impact on extending the storing period without affecting milk quality
 - More efficient plate coolers
 - Better insulated milk tanks

Objective:

- To establish the effect of milk storage duration (5 days) and storage temperature (2, 4 & 6 °C) on the microbial and manufacturing quality of bulk tank milk in mid lactation
- Microbial analysis data will be presented

Materials and Methods

- 3 identical bulk milk tanks
- Milk supply at milking diverted three ways
- Fresh milk added at each milking 8 occasions per week
- Milk sampled once daily and collected by the processor on day 5
- Each temperature treatment was analysed 6 times, twice in each tank (6 week trial)
- Mid lactation, Cows at pasture & full teat preparation including pre-milking teat disinfection
- Analyses for microbiological & processing quality of milk
- All energy usage and ambient temperatures recorded

Sampling procedures

 In-line drip sample taken to assess the quality of milk entering the tank at each milking

- TBC & Thermoduric count
- Milk composition
- SCC

Each tank sampled at 24h intervals and milk tested for microbiological & processing quality of milk

Three identical milk tanks

Bulk Tank Specification

- 3 x Dairymaster SwiftCool Milk tanks 4000litre
 - 20% Thicker insulation and thicker steel!
 - Soft start mode if low milk level in tank
 - Milk volume display
 - Alert messages to mobile
- Condensing unit -5.5hp
- 3 x Single stage coolers- 37 plates- milk cooled to 14.5°C before entering tank

One plate cooler for each milk tank

Bulk milk tank display screen

Microbiological and Manufacturing tests

Microbiological tests:

- Total bacterial counts
- Thermoduric counts
- Psychrotrophic bacteria
- Psychrotrophic thermodurics
- Proteolytic count
- Lipolytic count
- Sulphite Reducing clostridia
- Bacillus cereus
- Somatic cell count

•Manufacturing tests:

- Rennet Coagulation
- Protein profile
- Calcium
- pH
- Amino Acid
- Volatile compounds
- Nitrogen
- Plasmin and peptide
- Heat stability
- Titratable acidity

Materials and Methods

	Test	Milk	Media	Incubation
	ТВС	Raw	Petrifilm	37°C for 48 hours
	Psychrotrophic count	Raw	Petrifilm	7°C for 10 days
	Thermoduric count	Pasteurised during test	Petrifilm	37°C for 48 hours
	Thermoduric psychrotrophic count	Pasteurised during test	Petrifilm	7°C for 10 days
	Lipolytic count	Raw	Tributyrin agar with added Glyceryl tributyrate	37°C for 48 hours
	Proteolytic count	Raw	Calcium caseinate agar with added skim milk powder	37°C for 48 hours
	Presumptive <i>Bacillus</i> <i>cereus</i>	Raw/Pasteurisedd uring test	Bacara agar	32°C for 48 hours
	Sulphite-reducing <i>Clostridia</i> spp.	Raw	Sulphite iron agar	37°C for 72 hours

Effect of storage temperature and time on TBC

TBC range with 3 storage temperatures

Storage Temperature	2	4	6
% of samples > 5,000	7	31	55
% of samples > 10,000	3	7	41

Psychrotrophic bacteria

- Low temperatures allow the growth of psychrotrophic bacteria
- Psychrotrophic bacteria can cause spoilage of final product during storage
- Psychrotrophic bacteria in raw milk include gram-negative pseudomonas & gram-positive *Bacillus and Streptococcus*
- EU standard 5,000 CFU/ml

Effect of storage temperature & time on psychrotrophic bacteria

The Irish Agriculture and Food Development Authority

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Proteolytic and Lipolytic bacteria

-Proteolytic bacteria

-Lipolytic bacteria

- Proteolytic and lipolytic bacteria are mostly psychotrophic in raw milk
- •Regarded as a frequent cause of unexplained problems in milk processing
- Proteolytic bacteria can survive pasteurization and cause defects in UHT milk
- •With cold storage counts increase
- •Lowest levels observed where cows are grazing outdoors and teats are pre-dipped with disinfectant

Proteolytic bacteria (cfu/ml)

	Storage temperature		
Storage time (hrs)	2	4	6
1	745	725	779
24	712	658	759
48	738	748	858
72	498	401	717
96	443	335	677

Lipolytic count (cfu/ml)

	Storage temperature			
Storage time (hrs)	2	4	6	
1	925	761	895	
24	579	919	1005	
48	832	963	688	
72	853	803	1047	
96	619	673	860	

Presumptive *Bacillus cereus* and Sulphite-reducing *Clostridia* spp.

Presumptive Bacillus cereus

•7% of all milk samples were positive for *Bacillus cereus*.

•Evenly distributed across all temperature & time

Sulphite-reducing *Clostridia* spp.

- •3% of all samples were presumptive SRC/SRB.
- •Evenly distributed across all temperatures & time
- •Much higher levels observed for late lactation milk- 18%

Somatic cell count (cells/ml)

Summary-Microbiological tests

- TBC
 - Initial milk quality excellent --3,000 CFU/ml
 - Low TBC levels maintained in milk stored for 4 days when cooled at 2 or 4°C – no advantage to storing at 2°C
 - Large variation in milk TBC and higher levels from 3 days when stored at 6°C
- Psychrotrophic counts
 - Large variation and higher psychrotrophic counts from 3 days at 6°C
- Thermoduric
 - No change in low thermoduric counts with storage temperature
- Proteolytic and lipolytic
 - No difference with storage time or temperature
- SCC
 - -No difference with storage time or temperature

Warning

 Not all dairy farmers will achieve these results initial TBC important

 Influence of tank design, compressor size and plate cooler efficiency- IMPORTANT

• Rate of cooling may be critical

Future studies on cooling

- Late lactation milk higher initial TBC!
- Energy consumption at different cooling temperatures
- Benefits of quick cooling- ice/plate cooling
- Plate cooler water usage/costs/savings
- Option of maximising the use of night rate energy 2°C at night and 6°C by day-quality
- Prolonged storage including storage at the processing facility

Acknowledgements

- Marta Alisa Bagalini
- Stacey Rafter
- Jimmy Flynn
- Conor Doyle
- Paul Cotter

•Thank You

