New insights into food preservation stress responses in *Listeria monocytogenes* using comparative genomics

Bacterial Stress Response Group

www.nuigalway.ie/microbiology/cpoblab/home.htm

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Department of Agriculture, Food and the Marine An Roinn Talmhaíochta, Bia agus Mara

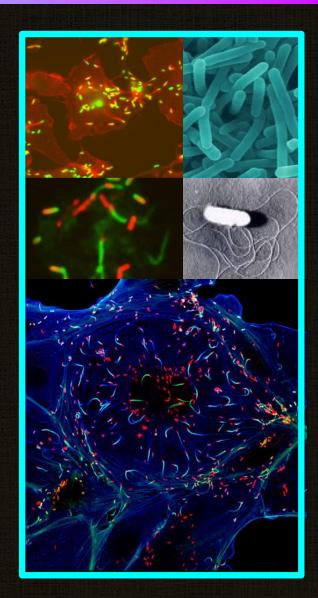
Conor O'Byrne, Teagasc Ashtown, May 24th 2023

Thanks to...

Jialun Wu

Bacterial Stress Response Group

www.nuigalway.ie/microbiology/cpoblab/home.htm

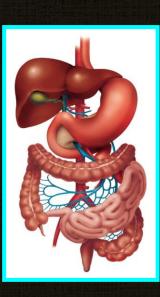

Kieran JordanOlivia McAuliffe

- Good luck to Jialun for his PhD defence next Friday!
- And thanks to his examiner Prof Fabian Commichau!

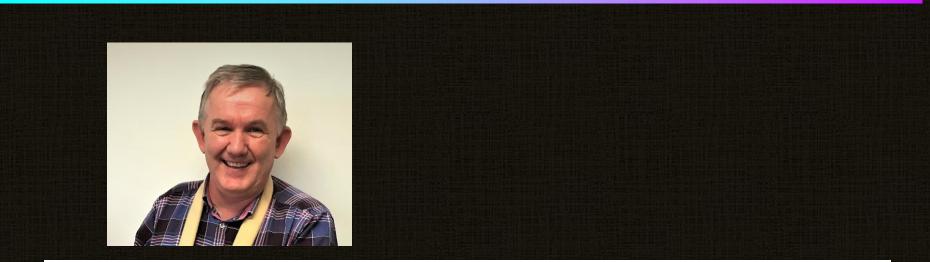
Talk Overview

- Listeria monocytogenes
- Background on acid resistance
- Characterisation of strain 1381
 - Role of Mn²⁺ in low pH growth
 - Identification of a new regulator of acid resistance
- Summary/conclusions

Listeria monocytogenes: A Pathogen Adapted for Environmental Survival


• Listeria belongs to phylum Bacillota (formerly the Firmicutes) – found widely in the environment

- Important food-borne pathogen that can invade and replicate in human cells
- Grows over a wide range of pHs (4.3-11.0) and survives down to pH 2.0
- Grows at refrigeration temperatures (as low as 0°C)
- Grows at salt concentrations of up to 2M
- Serious problem for RTE-food producers



Teagasc escapee visits Unilever!

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 1999, p. 3048–3055 0099-2240/99/\$04.00+0 Copyright © 1999, American Society for Microbiology. All Rights Reserved. Vol. 65, No. 7

Survival of Low-pH Stress by *Escherichia coli* O157:H7: Correlation between Alterations in the Cell Envelope and Increased Acid Tolerance

KIERAN N. JORDAN,^{1,2} LYNN OXFORD,¹ and CONOR P. O'BYRNE^{1*}

Microbiology Department, Unilever Research Colworth, Sharnbrook, Bedfordshire MK44 1LQ, England,¹ and TEAGASC, National Dairy Products Research Centre, Moorepark, Fermoy, County Cork, Ireland²

Received 17 September 1998/Accepted 15 April 1999

Adaptive Acid Tolerance: Two Landmark Papers!

Microbiology (1996), 142, 2975–2982

Printed in Great Britain

Acid tolerance in *Listeria monocytogenes*: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance

Mark J. Davis, Peter J. Coote and Conor P. O'Byrne

Author for correspondence: Conor P. O'Byrne. Tel: +44 1234 222377. Fax: +44 1234 222277.

Microbiology Department, Unilever Research, Colworth Laboratory, Sharnbrook, Bedfordshire MK44 1LQ, UK Listeria monocytogenes acquired increased acid tolerance during exponential growth upon exposure to sublethal acid stress, a response designated the acid tolerance response (ATR). Maximal acid resistance was seen when the organism was exposed to pH 5·0 for 1 h prior to challenge at pH 3·0, although intermediate levels of protection were afforded by exposure to pH values

APPLIED AND ENVIRONMENTAL MICROBIOLOGY, May 1996, p. 1693–1698 0099-2240/96/\$04.00+0 Copyright © 1996, American Society for Microbiology Vol. 62, No. 5

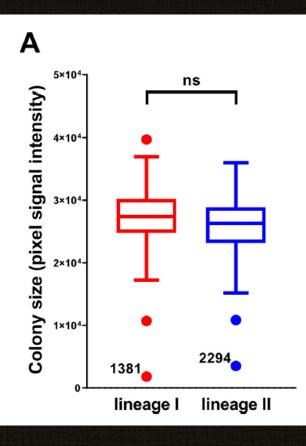
Adaptive Acid Tolerance Response in *Listeria monocytogenes*: Isolation of an Acid-Tolerant Mutant Which Demonstrates Increased Virulence

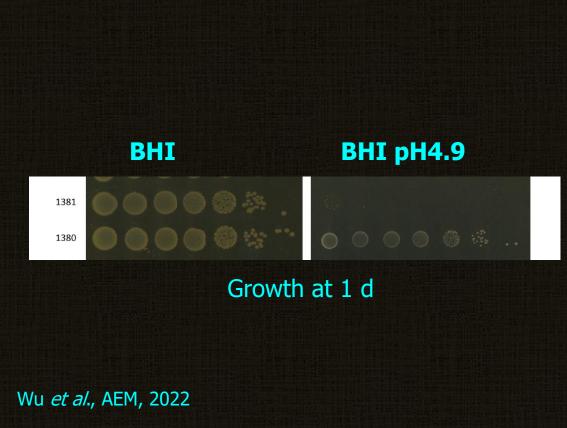
BRID O'DRISCOLL, CORMAC G. M. GAHAN, AND COLIN HILL* Department of Microbiology and National Food Biotechnology Centre, University College Cork, Cork, Ireland

Received 4 December 1995/Accepted 2 March 1996

The ability of Listeria monocytogenes to tolerate low-pH environments is of particular importance because the pathogen encounters such environments in vivo, both during passage through the stomach and within the

Summary of what we know about Acid tolerance/Resistance in *L. monocytogenes*

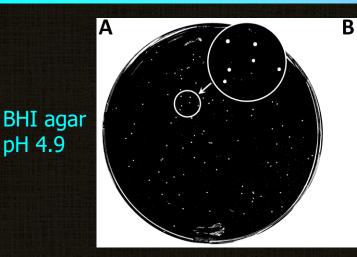

- *L. monocytogenes* can adapt to sub-lethal acid stress to produce highly acid resistant cells (the ATR)
- Stationary phase cells are more acid resistant than exponential cells
- The alternative sigma factor SigB plays a key role in acid resistance
- But the ATR can still occur in a mutant lacking sigB
- Amino acid decarboxylation and deamination/deimination are important determinants for acid resistance
- Of these the glutamate decarboxylase (GAD) system appears to be particularly significant – *L. mono* has 2 GAD systems


Phylogenetically Diverse Collection of Food & Clinical *L. monocytogenes* Isolates

- Through an earlier DAFM funded project we generated a large collection of food isolates
- Combined with some clinical isolates and EURL strains we phylogenetically compared 168 strains in total
- The collection is phylogenetically diverse with strains spanning multiple clonal complexes (CC)
- Growth at low pH (acid tolerance) and survival at extreme low pH (acid resistance) was measured for the full set of strains
- Both phenotypes were highly variable across the collection

One CC2 strain (1381) was highly sensitive to growth at low pH

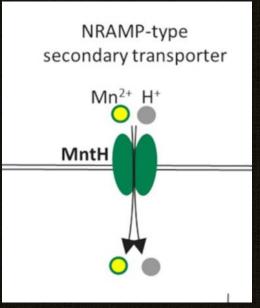
Colony size following 4 d growth on BHI agar at pH 4.9



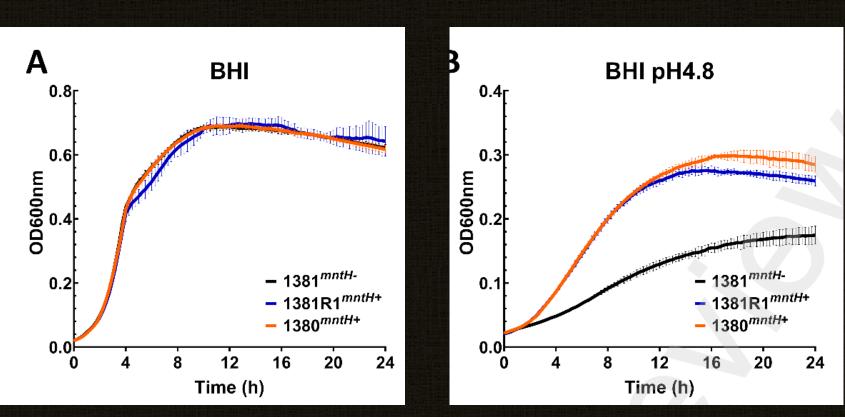
Genetic Differences between CC2 strains 1381 and strain LI0521: Where to start?!

Locus	Polymorphism	Protein Effect	Details	Full length (aa)	Note	Annotation
lmo2365/2364	Deletion	Frame Shift	91fs	504		
lmo1666	SNP	Truncation	Y177*	1718		lapB
lmo1424	Insertion	Frame Shift	263 fs	448		mntH
lmo0835	Deletion	Frame Shift	255 fs	335		
lmo2640	SNP	Substitution	G149V	180		
lmo2201	SNP	Substitution	S132P	413		fabF CDS
lmo2035	SNP	Substitution	G80S	363		murG CDS
lmo0857	SNP	Substitution	R44H	237		
lmo0786	SNP	Substitution	V7541	937		manR
lmo0782	Deletion		del F207	271		троD
lmo2287	SNP	Substitution	D1235G	1788		
Imo1100 :: hypothetical protein	Insertion					
lmo2131 ::lmo2132	Insertion					crp/fnr ::crp/fnr
lmo1145	SNP	Synonymous				eutP
lmo1596	SNP	Synonymous				
lmo0689 ::1mo0690	Deletion					FliC/FljB ::cheV
lmo0631	SNP	Synonymous				
lmo1855	Insertion	Frame Shift			*	
lmo1780	Insertion	Frame Shift			*	рерТ
lmo1244	Insertion	Frame Shift			*	
lmo0785	Insertion	Frame Shift			*	manR
lmo0714	Insertion	FrameShift			*	filG

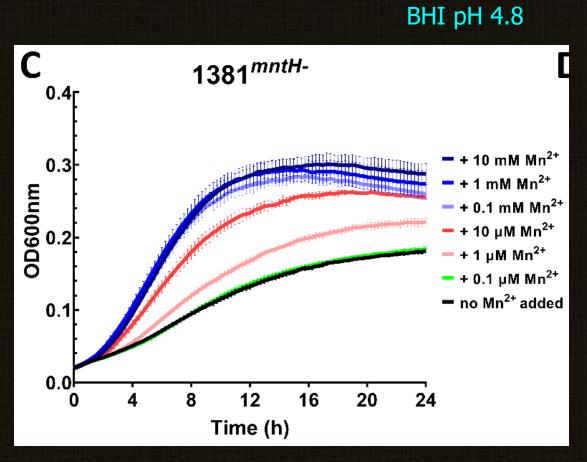
SNPs & indels across 22 genetic loci


Reversion mutants on low pH agar plates revealed a mutation in *mntH* in 1381

	760	780		800	820
1381	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTTTTCCTTT	ATCGATTCCACTTTTCCTTTA	S P L F L	AACGATTG:
1380	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	AACGATTG
1381R1	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R2	ACAAAAGAAGGGAAGAAA	GAAGCGATTCGTTT	TTCCTTTA	D S T F S L	
1381R3	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R4	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R5	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R6	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R7	ACAAAAGAAGGGAAGAAA	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	AACGATTG
1381R8	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R9	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	TTCCTTTA	TCGATTCCACTTTTTCTTT	
1381R10	ACAAAAGAAGGGAAGAAA T K E G K K	GAAGCGATTCGTTT	SF	TCGATTCCACTTTTTCTTT/	AACGATTG

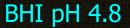

Wu et al., IJFM, 2023

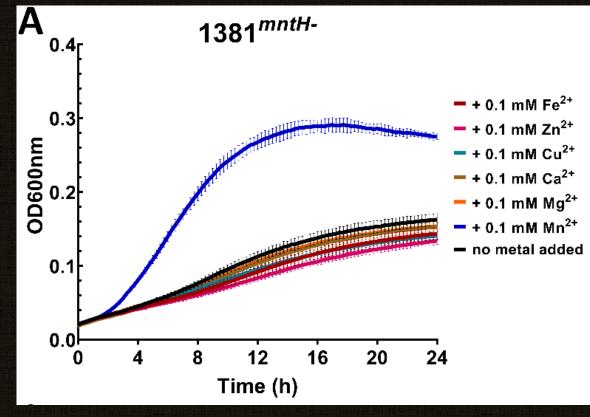
- *mntH* encodes a secondary Mn²⁺ transporter
- Suggested that Mn²⁺ transport is required for low pH growth


Bosma *et al.*, FEMS Micro Rev 2021

Reversion mutant restoring *mntH* ORF restores growth at low pH

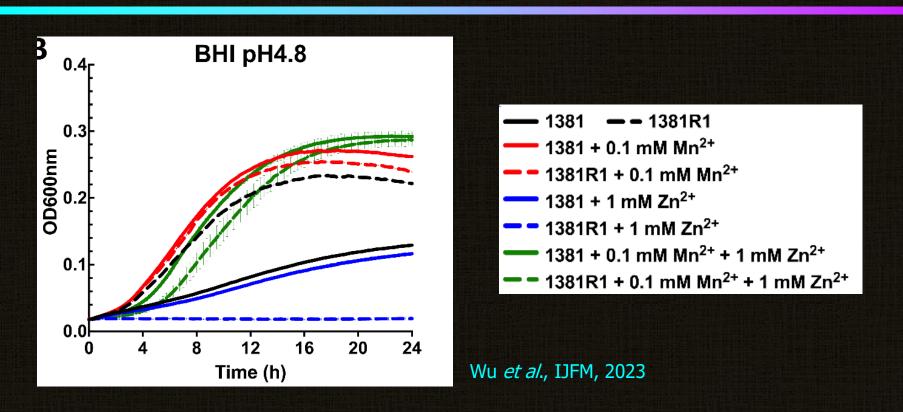
Wu *et al.*, IJFM, 2023

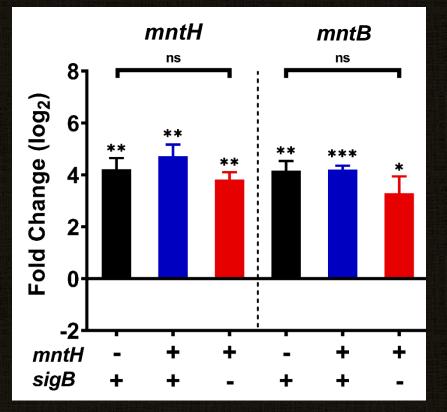

Mn²⁺ can restore the growth of 1381 at pH 4.8



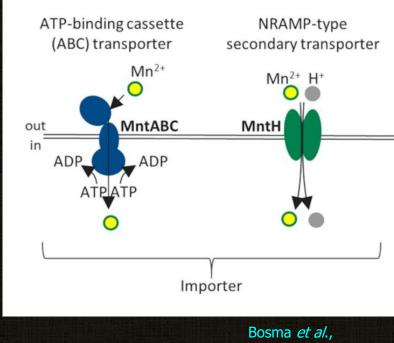
 Suggests that the Mn²⁺ deficiency is limiting growth at low pH

Wu et al., IJFM, 2023

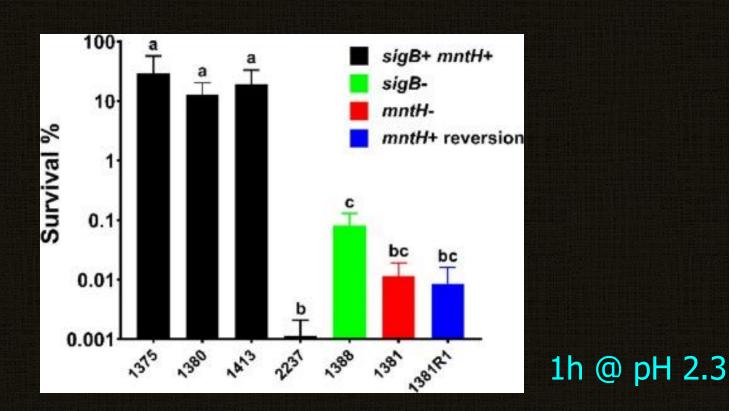

Other divalent cations do not restore the growth of 1381 at pH 4.8


Wu *et al.*, IJFM, 2023

Mn²⁺ protects against Zn²⁺ toxicity at low pH


- Suggests that MntH can also transport Zn²⁺
- Could this provide a selective advantage for loss of MntH function?

Transcription of both Mn²⁺ transporters are induced at low pH


Wu *et al.*, IJFM, 2023

Exp. Phase, pH 5.0 for 15 min

FEMS Micro Rev 2021

mntH genotype doesn't affect acid resistance

 Suggests that in strain 1381 sensitivity to lethal acid stress is independent of *mntH*

OLLSCOIL NA GAILLIMHE UNIVERSITY OF GALWAY

Thanks For Listening!

Bacterial Stress Response Group

www.nuigalway.ie/microbiology/cpoblab/home.htm

Jialun Wu

Duarte Guerreiro

COLLABORATORS

- **Kieran Jordan** •
- Olivia McAuliffe •

Department of Agriculture, Food and the Marine An Roinn Talmhaíochta,

- Jörgen Johansson •
- Francisco García-del Portillo •
- Bert Poolman •
- **Birgitte Kallipolitis** •
- **Christine Ziegler** •

