Early life nutrition advances sexual development and semen availability in the bull

David A. Kenny

Animal and Bioscience Research Department, Teagasc Grange, Dunsany, Co. Meath, Ireland. School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.

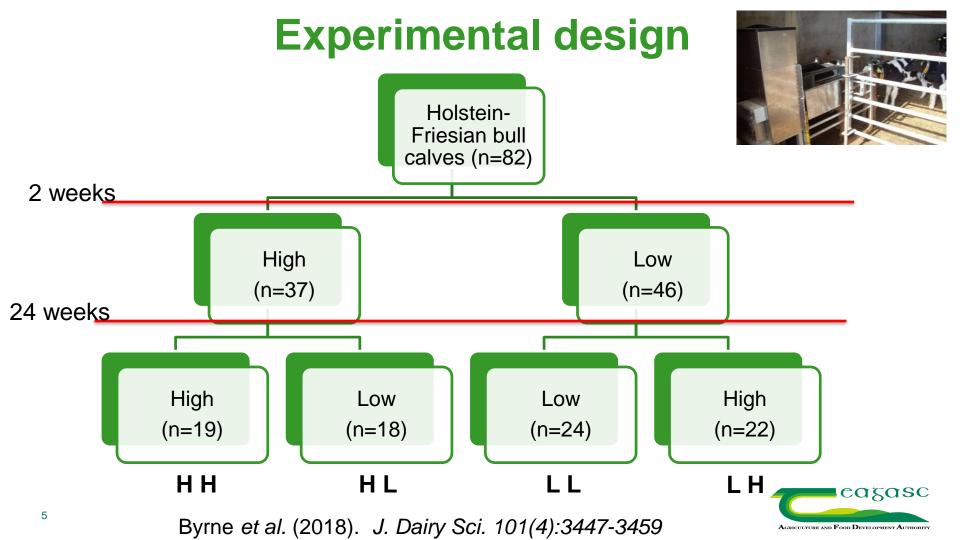
Why advance sexual development?

- Generation interval limits genetic gain
 - Generation interval = average age of the parents when offspring are born
- Genomic selection
- Puberty and sexual maturation
- Semen production from peri-pubertal bulls
 - Lower semen quantity and quality from peri-pubertal bulls (Murphy et al., 2018)
 - 30-50% of semen yield of mature bull in first year at stud (Amann and DeJarnette, 2012)

Early life nutrition and sexual development in cattle

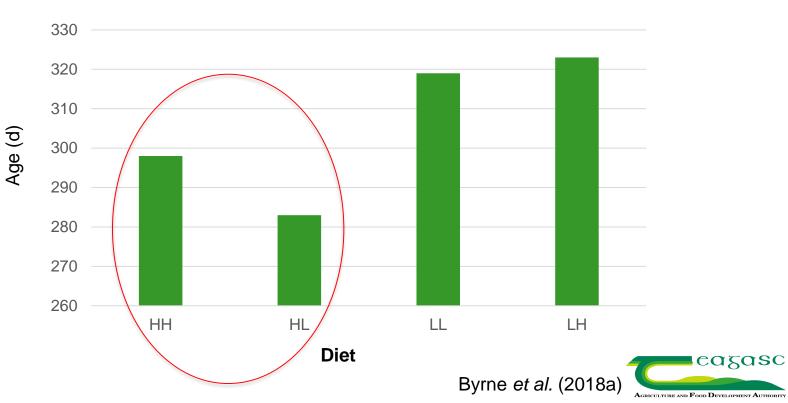
- Rate of sexual development and age at puberty onset affected by:
- Breed
- > environmental influences i.e. season, nutrition,
- Likely mediated through complex neuroendocrine signalling
- Timing of nutritional intervention is likely important to the potency of the response (Harstine et al., 2015, Byrne et al. 2018a)

Kenny and Byrne (2018). Animal. 12 (S1):36-44



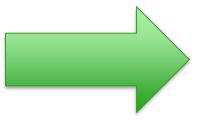
Experiment

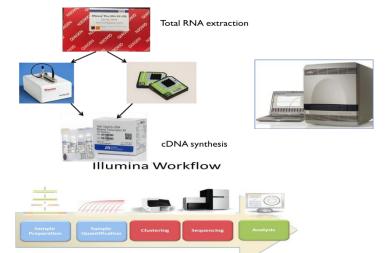
Effect of plane of nutrition (i) pre- and (ii) post-six months of age in Holstein-Friesian bulls, on age at puberty and post-pubertal semen production

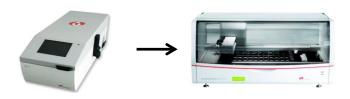

> Byrne et al. (2018). J. Dairy Sci. 101(4):3447-3459 Byrne et al. (2018). J. Dairy Sci. 101(4):3460-3475

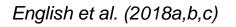
Effect of early life plane of nutrition on timing of puberty in Holstein-Friesian bulls

Morphological and molecular analysis of the brain-testes axis

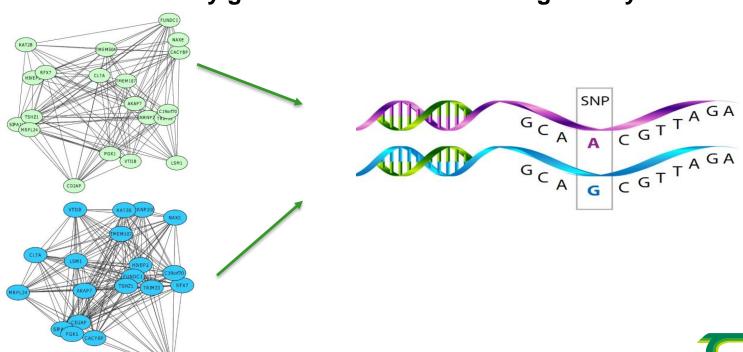

RNA quantity


- Arcuate region of hypothalamus
- Anterior pituitary
- Testes
- Adipose & liver




Analyses

- RT-PCR
- RNASeq
- Histology, IHC


eagasc

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Integrating 'omics' datasets

- Advanced bioinformatics and gene network analysis
- Identification of key genes and variants affecting fertility traits

Semen characteristics and fertility

- Improved early life nutrition hastens onset of puberty and sexual maturity
- Latent effects on post-pubertal semen quality and fertility??

Semen Quality

- Collected semen monthly (8-17 mths of age)
- Bulls on H diet earlier availability of semen with
- Greater sperm concentration
- Greater sperm motility

Post pubertal semen production

Effect of early pre-pubertal plane of nutrition on estimated number¹ and sale value² of semen straws per ejaculate from HF bulls aged 12 -15 months

	High/High	High/Low	Low/High	Low/Low
Number of straws	308	205	177	92
Commercial value (€)	4619	3073	2662	1377

¹15 million sperm/straw ²€15/straw

Byrne *et al.* (2018)

Post pubertal fertility - IVF

Treatment	High/High	High/Low	Low/High	Low/Low
Oocytes (n)	924	1355	1345	1060
% Cleaved	75.0 ± 0.05	69.2 ± 0.04	75.5 ± 0.03	70.5 ± 0.05
% Blastocysts (7d)	28.6 ± 0.03	28.5 ± 0.03	31.8 ± 0.03	27.7 ± 0.02

J. Dairy Sci. 101:3447–3459 https://doi.org/10.3168/jds.2017-13719 American Dairy Science Association⁶, 2018.

y publications

feedi Plane of pr Friesia age at

C. J. By
C. J. Byrri

'Animal & c

Dublin, Do4

Laboratory

§UE1297 PA

Plane of physics

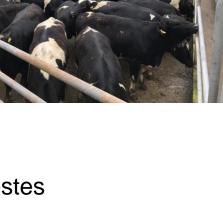
C. J. Byrr and D. A. *Animal and †School of A ‡Laboratory §Institute for #School of V

J. Dairy Sci. 101:1–16 https://doi.org/10.3168/jds.2017-13720

PLOS ONE

English et al. BMC Genomics (2018) 19:281 **BMC Genomics** https://doi.org/10.1186/s12864-018-4681-2 Theriogenology 96 (2017) 58-68 Contents lists available at ScienceDirect animal Animal (2016), 10:9, pp 1547-1556 @ The Animal Consortium 2015 doi:10.1017/S1751731115002438 Effec deve gona chall C.J. By Animal, page 1 of 9 @ The Animal Consortium 2018 animal P. Lon doi:10.1017/S1751731118000514 * Animal a * School oj E Labora to: calv AM**CSIRO** PUBLISHING S M Reproduction, Fertility and Development, 2018, 30, 101-117 https://doi.org/10.1071/RD17376 D. Joh B. Ear Repn Early onset of puberty in cattle: implications for gamete and I and I qualit PLOS ONE D. A. Corre 1 Animal E D. A. Ke Dublin, B RESEARCH ARTICLE ^AAnimal a Prepubertal nutrition alters Leydig cell C15 PW functional capacity and timing of puberty BSchool o D04 F6X CCorrespo Ravinder Anand-Ivell¹⁺, Colin J. Byrne 32,3, Jonas Arnecke¹, Sean Fair⁴, Pat Lonergan³, David A. Kenny², Richard Ivell₆ 1 School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom, 2 Animal and Bioscience Department, Teagasc, Dunsany, Ireland, 3 School of Agriculture and Food Science, University

College Dublin, Dublin, Ireland, 4 Laboratory of Animal Reproduction, Department of Biological Sciences,


University of Limerick, Limerick, Ireland

Summary

- Enhancing early calfhood nutrition leads to:
 - earlier onset of puberty and availability of saleable semen
 - √ advanced steroidogenesis and testicular development
- No effect on fertility (IVF based)
- Identified key genes and molecular pathways in the brain and testes
- Validate these as part on a large on-farm bull fertility study
- Improved knowledge of complex biochemical regulation of sexual development
 - ✓ effective design of nutritional rearing regimens
 - ✓ identification of biomarkers for earlier sexual maturation and potentially improved fertility in the bull

Thank You!

