Environmental Sustainability Cathal Buckley

Teagasc, Agricultural Economics & Farm Surveys Department

Rural Economy and Development Programme

December 3rd 2024

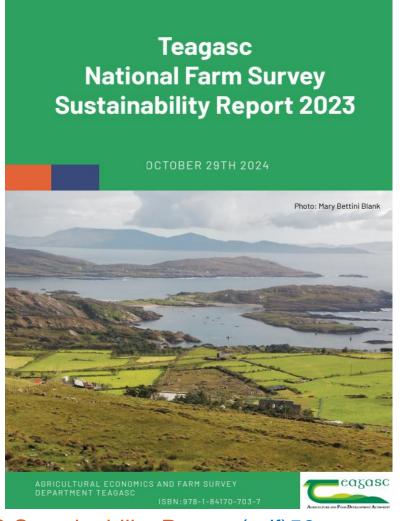
Overview

Sustainability conceptual framework

Methodological approach used for projecting for 2024

Projections results for 2024

Summary / conclusion



Teagasc NFS Sustainability Report

- Farm level sustainability is intersection of:
 - 1. Economic
 - 2. Environmental
 - 3. Social
 - 4. Innovation

- The 2023 Teagasc Sustainability Report
 - Published 29th of October 2024
 - 9th report since 2013

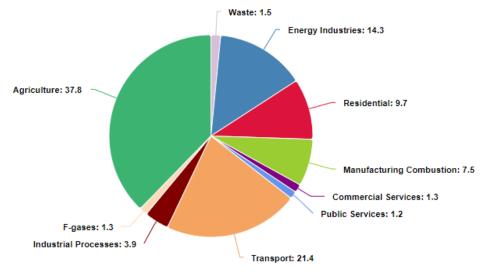
Teagasc NFS Sustainability Report (pdf)56

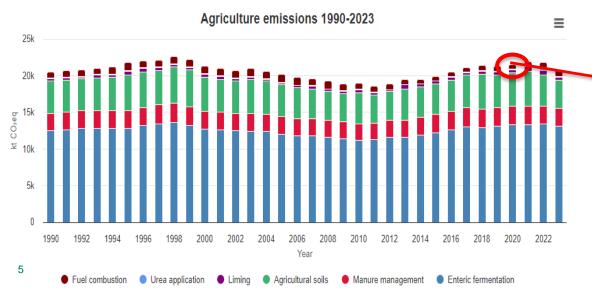
Environmental Sustainability

- 1. Gaseous Emissions
 - Greenhouse Gases
 - Ammonia

2. Risk to water quality

3. Biodiversity





Gaseous Emissions - Agriculture

Greenhouse gas emissions share by sector in 2023

Source: EPA, 2024

Climate Action Plan 2021: GHGs

- Sectoral GHG reduction targets for 2030 (compared to 2018)
 - Agriculture: 25%

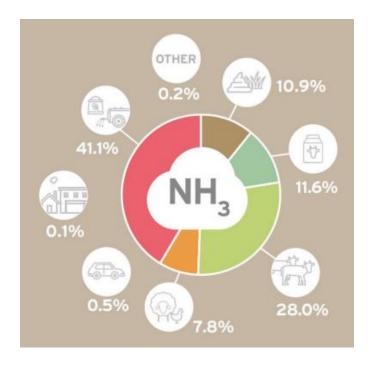
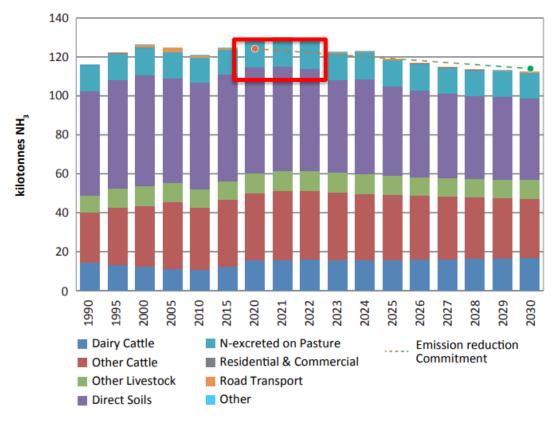
22.4 Mt in 2018 to 16.8Mt in 2030

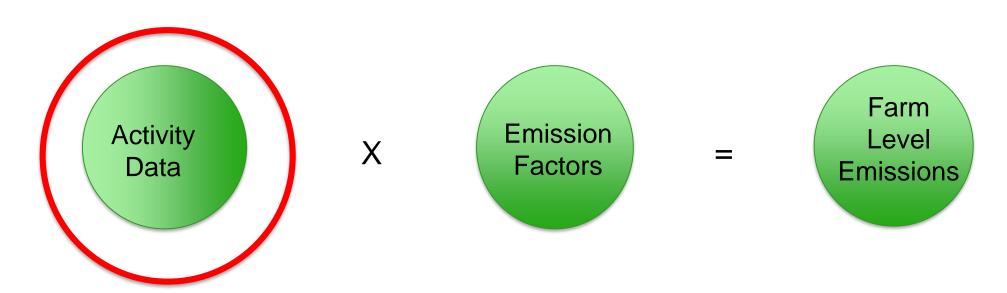
Carbon neutrality by 2050

Source: EPA, 2024

Gaseous Emissions - Ammonia

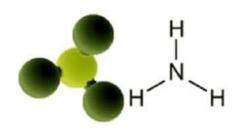
99.4% of Ammonia Emissions generated from Agriculture (EPA, 2024)


Figure 4: Trend in $\mathrm{NH_3}$ emissions 1990-2030 (WAM) and emission reduction commitments 2020-2030

Source: EPA, 2024

Emissions – How are they calculated


- Activity Data
 - Farm Practice (e.g. animal numbers, chemical fertilisers & manure management)
- Emission Factors
 - Scientific evidence from lab/field experiments, national level if possible (peer reviewed)

Methodological approach – Emission Factors

- GHG All in common currency of CO₂ equivalence
 - » IPCC based national inventory approach for all farm types
 - » Replicating approach used by EPA at national level
 - » CO₂ equivalent in the base gas (1=1)
 - Methane (CH_4) 1 tonne = 28 tonnes of CO_2 equivalent
 - Nitrous Oxide $(N_2O)1$ tonne = 265 tonnes of CO_2 equivalent
- Ammonia (NH₃)
 - » National inventories approach for all farms
 - » Replicating approach used by EPA at national level for reporting under the EU NEC Directive

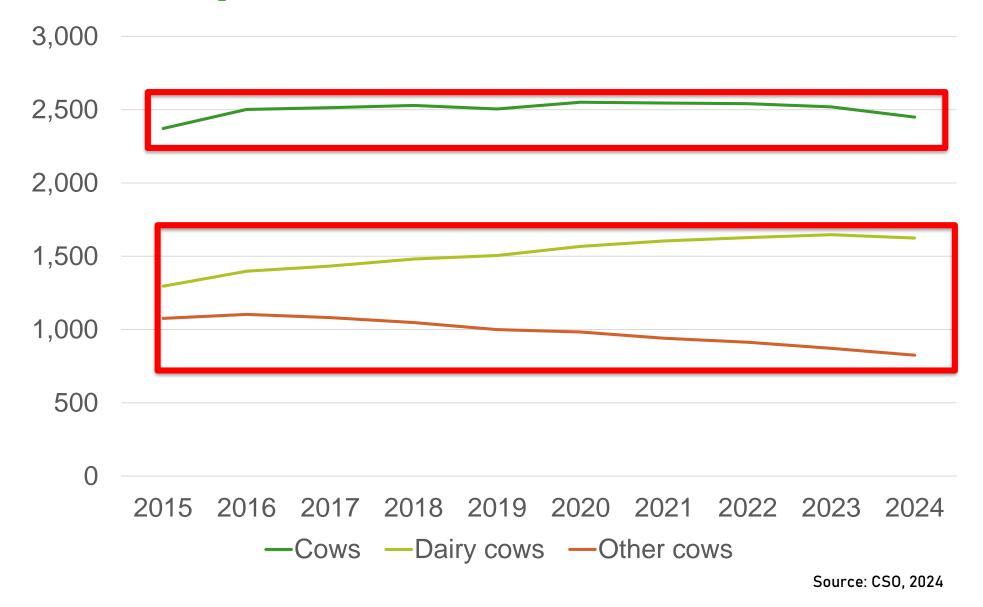
Methodological approach – Activity Data

- Activity data from Teagasc National Farm Survey
- NFS conducted by Teagasc since 1972 (part of EU Farm Accountancy Data Network)
 - Sample of 808 farms in 2023 representing over 84,723 nationally
 - Reports on main land based systems Dairy, Cattle, Sheep & Tillage
- Data captured for environmental modelling
 - Animal numbers by category (e.g. Dairy Cows)
 - Crops grown (e.g. barley, wheat, oats)
 - Fertilisers applied (e.g. CAN, urea, protected urea)
 - Lime applied
 - Manure management practices (housing, storage, landspreading)

Activity Data Projections / Assumptions - 2024

Animal numbers & chemical fertilisers applied are key parameters –
 Type and quantity

- 1. Animal Inventories
 - CSO June survey 2024 vs 2023
- 2. Chemical Fertiliser & Lime Sales
 - Sales data DAFM Sept 2023 June 2024**
 - Lime Sales January May 2024**
- Apply these changes to farms with the Teagasc NFS
 - Using 2023 as the base year


Cattle Numbers June 2024 vs 2023

Animal inventories	2024 vs 2023	% of population
Total cattle	-2.2%	100%
Dairy cows	-1.4%	22%
Other cows	-5.4%	12%
Bulls	+5.6%	1%
Cattle: 2 years and over	+2.6%	11%
Cattle: 1-2 years	-3.4%	26%
Cattle: under 1 year	-2.3%	28%

Source: CS0, 2024

Cow Population in Ireland 2015 to 2024

Enteric Fermentation

Enteric Fermentation EF	2022
Animal Category	0.25%
Dairy cows	121. <mark>43</mark>
Beef cows (Suckler Cows)	73.67
Dairy heifers	55.57
Beef heifers	59.08
Cattle <1 year	34.84
Cattle < 1 yrs - male	36.62
Cattle < 1 yrs - female	33.27
Cattle 1 - 2 yrs	54.41
Cattle 1 - 2 yrs - male	56.99
Cattle 1 - 2 yrs - female	51.18
Cattle > 2 yrs	27.98
Cattle > 2 yrs - male	32.73
Cattle > 2 yrs - female	20.18
Bulls for breeding	96.26

Sheep Numbers June 2024 vs 2023

Animal inventories	2024 vs 2023
Total sheep	-8.8%
Ewes	-12.0%
Rams	-10.9%
Other sheep	-5.1%

Source: CS0, 2024

Chemical Nitrogen Fertiliser Sales (September to June*)

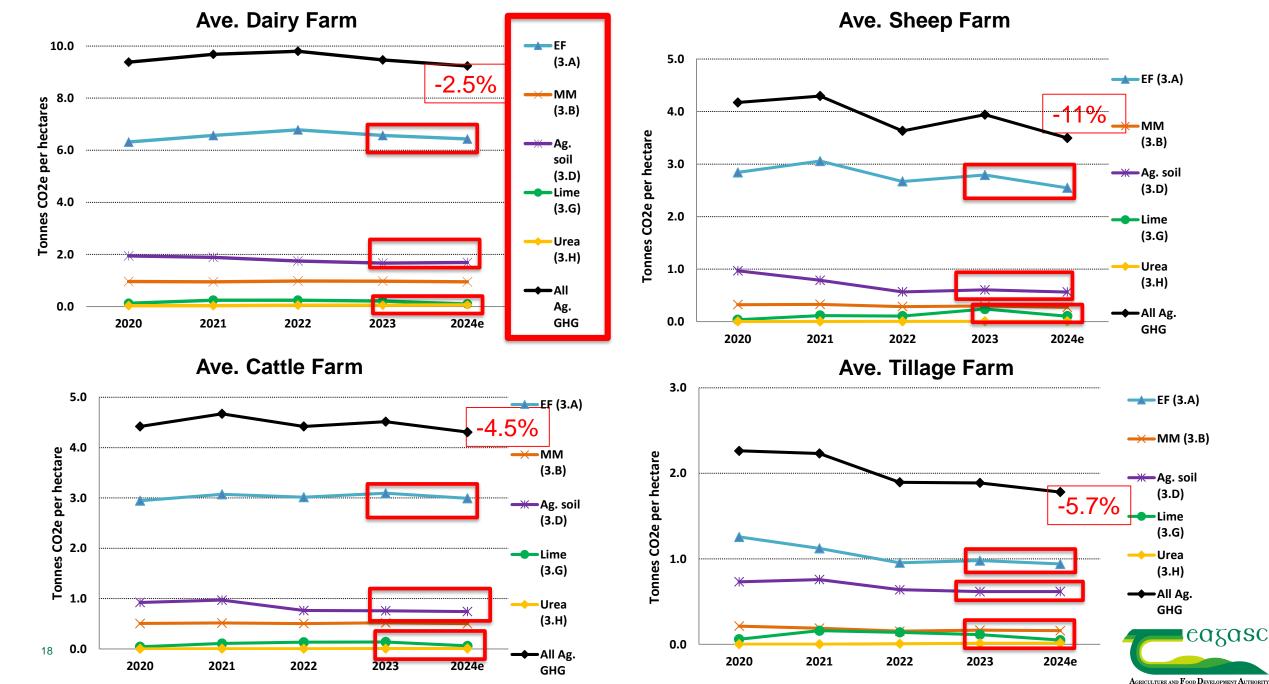
	2023*	2024*	% Change
Straight CAN	58,128	59,572	2.5%
Straight Urea	33,332	27,582	-17.3%
Protected Urea	25,766	40,798	58.3%
NK Compounds	1,412	3,820	170.5%
NP Compounds	983	1,089	10.8%
NPK Compounds	103,299	98,002	-5.1%
Other N Fertilisers	4,478	5,456	21.8%
Total	227,398	236,319	3.9%

Source: DAFM, 2024

Chemical Nitrogen GHG Emission Factors

GHG linked Emission factors	(kgN2O-N/Nkg)	EF Multiple
CAN	0.0140	1.0
Straight Urea	0.0025	5.6
Protected Urea	0.0040	3.5

Source: EPA, 2024



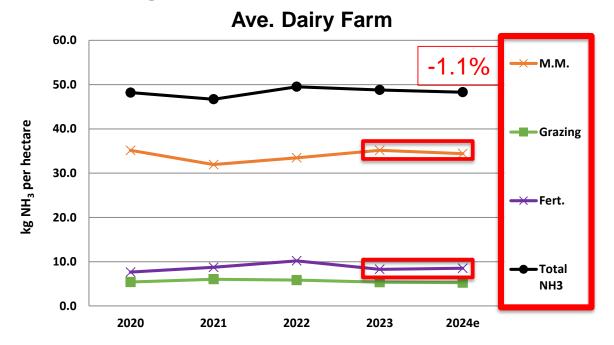
GHG emissions profile for Agriculture in ROI 2022

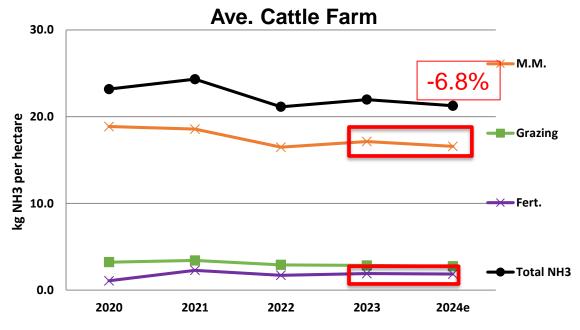
3. Agriculture (Mt CO2 eq)	2022	%
3.A Enteric Fermentation (CH₄)	14.58	65%
3.B Manure Management (CH, & N ₂ O)	2.72	12.1%
3.C Rice Cultivation	-	-
3.D Agricultural Soils (N₂O)	4.38	19.5%
3.E Prescribed Burning of Savannas	-	-
3.F Field Burning of Agricultural Residues	-	-
3.G Liming (CO ₂)	0.64	2.8%
3.H Urea Application (CO ₂)	0.13	0.6%
3.I Other Carbon-containing fertilizers	-	-
3.J Other	-	-
Total Emissions (Mt CO ₂ eq)	22.4	100%

Projections for 2024 for GHG emissions tonnes per hectare NFS Farms – IPCC Category

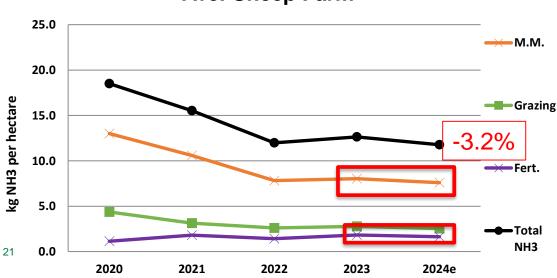
NH₃ National Inventory Accounts

Total NH ₃ emissions (kilotonnes NH ₃)	2022	%
Cattle (Manure Management (87%) + Grazing (13%)	93.7	74%
Pigs	6.1	5.0%
Sheep (Manure Management (59%) + Grazing (41%)	2.9	2.2%
Poultry	4.9	3.9%
Horses	1.7	1.3%
Mules	0.1	0.1%
Goats	0.0	0.0%
Chemical Fertilizer	18.1	13.2%
Other	0.3	0.3%
National Total	127.8	100.0%

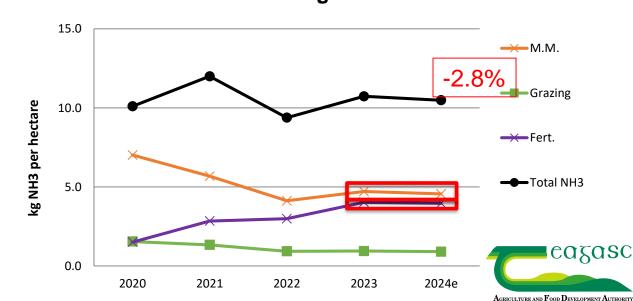

NH₃ Emission Factors


N Excretion Rates (kg/head/yr)	2022	
Animal Category		
DairyCows	109.99	
Cows Excluding Dairy Cows	76.76	
Dairy Heifers	74.69	
Other Heifers	78.83	
Cattle 0 - 1 yrs male	37.31	
Cattle 0 - 1 yrs female	34.07	
Cattle 1 - 2 yrs male	75.97	
Cattle 1 - 2 yrs female	70.66	
Cattle > 2 yrs male	46.18	
Cattle > 2 yrs female	44.34	
Bulls	90.21	

Ammonia Emission Factors Chemical N	(NH3 - g per kg)	EF Multiple
Straight Urea	195	1.0
CAN	24	8.1
Protected Urea	42	4.6



NH₃ emissions kg per hectare by Farm System



Ave. Sheep Farm

Summary / Conclusion (a)

- Lower animal activity levels in 2024 but not across all categories
 - June cattle number -2.2%
 - Sheep numbers -8.8%
- Quantity of chemical N fertilisers applied in 2024
 - Chemical N sales (Sept-June) up by 3.9%
 - » 58% increase in the use of protected urea
- Lime projected to decline by 56%??
 - Reduced pulse of direct GHG emissions in short run

Summary / Conclusion (b)

Estimates - Absolute per hectare GHG Emissions in 2024

- ↓ 2.5% on Dairy Farms
- 1 5-6 % on Cattle & Tillage Farms
- 11% on Farms

Estimates - Absolute NH₃ Emissions in 2024

- 1 1% on Dairy Farms
- ↓ 2-3% Cattle & Tillage Farms
- √ 7% on Sheep Farms

