The Effect of Feed and Stage of Lactation on Milk Processability

Background

Research approach

Milk production

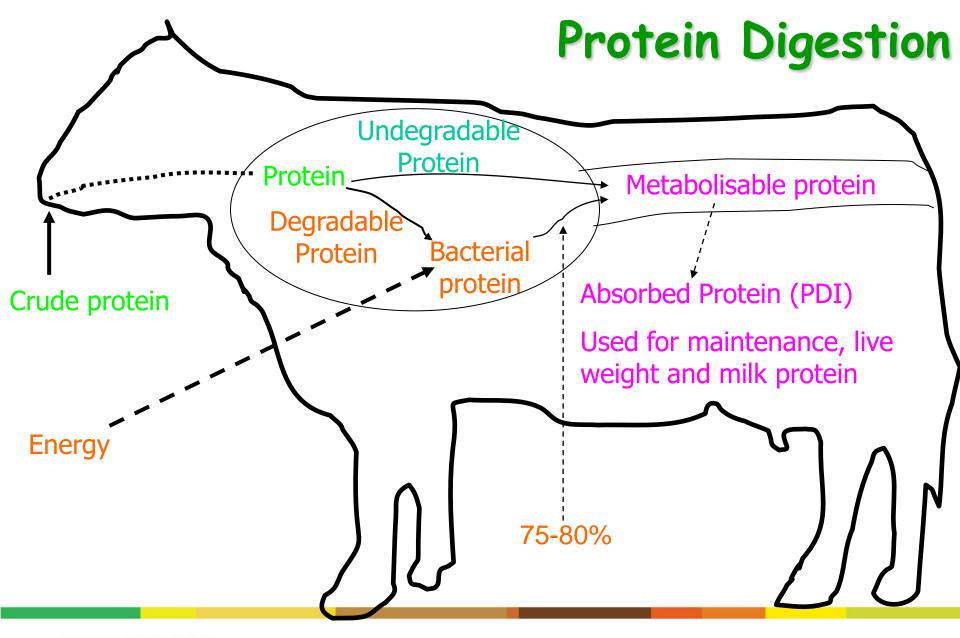
Milk processability

Why milk processability?

- Milk urea nitrogen (MUN) concentrations very high in spring 2011
- □ MUN not beneficial from processing cheese perspective

Milk Proteins

- Casein: 78-80% of milk protein
- \square as1, as2, b and k
- ☐ Relatively heat stable
- Aggregation, yoghurt / cheese manufacture
- Whey Proteins: 17-20% of milk protein
- □ Globular, highly folded, a-helices, b-sheets
- □ b-lactoglobulin (~10% total protein)
- □ a-lactalbumen (3.7%)
- □ Other serum proteins: BSA, Iq
- □ Not heat stable: can aggregate (gel)


Non protein Nitrogen: 5%

Why milk processability?

- Milk urea nitrogen (MUN) concentrations very high in spring 2011
- □ MUN not beneficial from processing cheese perspective
- What factors affect MUN?
 - Diet affects milk composition (Broderick, 2003) and milk processability (of which heat stability is an indicator) (Singh, 2004)
 - Stage of lactation has an important effect on milk processability (Guinee et al., 1999)

Ireland and the grass-based system

- Maximum profitability for dairy farms achieved through optimum utilisation of pasture (O'Donovan et al., 2007)
- □ However, due to grass growth deficits in spring and autumn, and poorer grass quality in autumn, supplementation is required (Burke et al., 2008)

Background

Research approach

Milk production

Milk processability

Research Approach

- □ Teagasc AGRIC and Teagasc FRC joint research
- □ Impose diets on dairy cows in spring (early lactation) and autumn (late lactation) to
 - Measure milk production
 - Generate milk from different treatments
 - Measure total milk protein, NPN and Non-casein N using Kjeldahl method
 - Remove fat by 'Separator' to make Skim milk
 - Measure protein profile (casein and whey)
 - Measure heat coagulation time on freeze dried samples

Experimental diets

- Spring early lactation
- Autumn late lactation
- Grazed grass as the base feed
- With supplementary feed
 - ↓ grazed grass as supplementary feed ↑
- Spring: no grass silage, only concentrate
- ☐ Autumn: both feeds considered

- □ Spring: 4 kg DM high, medium or low CP concentrate feed (+13 kg DM grazed grass)
- Autumn: 13 kg DM grazed grass alone, or with 4 kg DM supplementary feeds grass, bale silage, pit silage or concentrate

Background

Research approach

Milk production

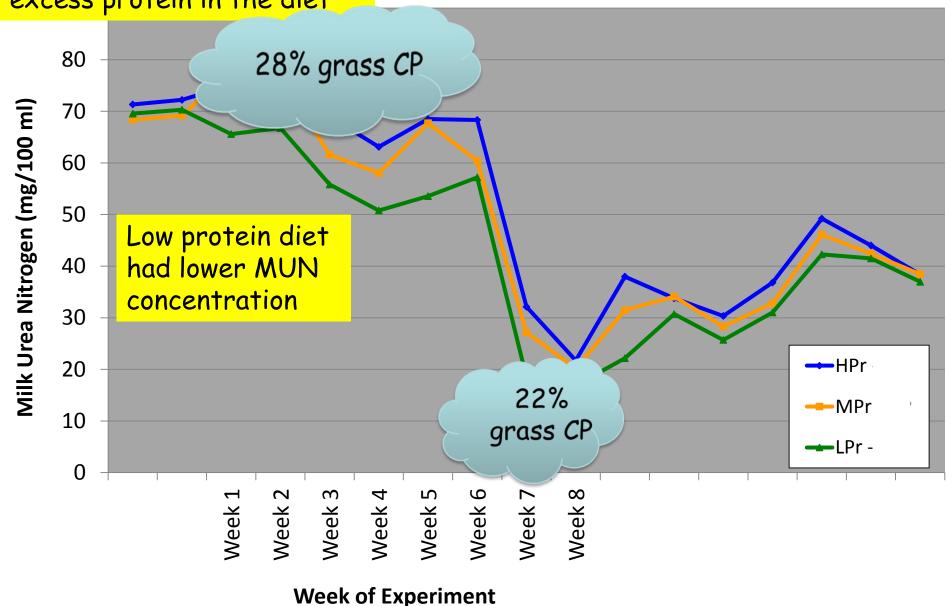
Milk processability

Milk production

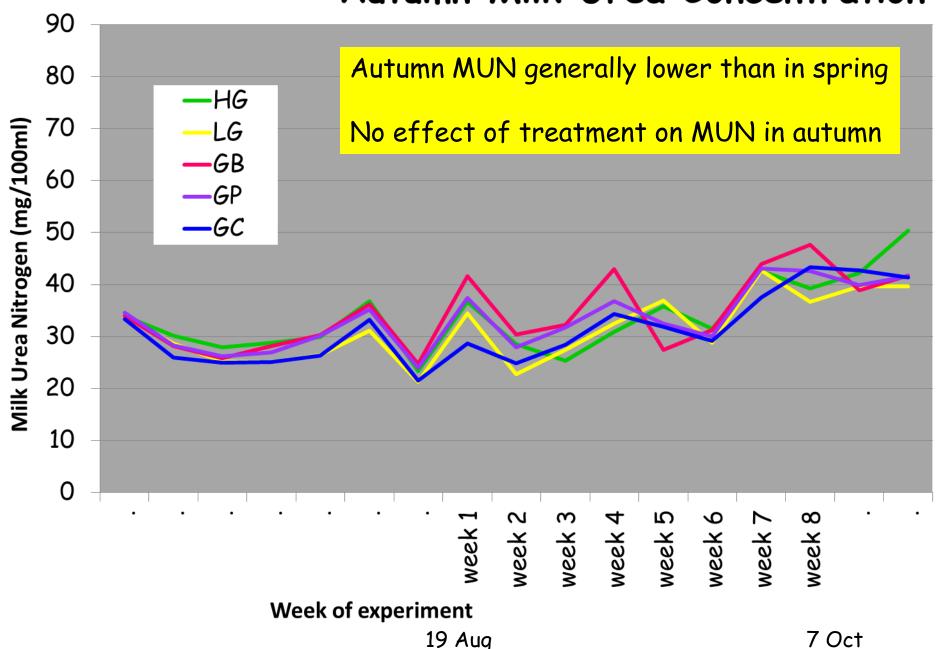
13 kg DM grass SPRING 4 kg DM concentrate	High CP	Medium CP	Low CP
Milk Yield (kg/d)	27.6	27.0	26.2
Milk Fat (%)	4.5	4.5	4.6
Milk Protein (%)	3.41	3.36	3.37
Milk Solids (kg/d)	2.1	2.1	2.0

Milk Yield (kg/d	d)	27.6	27.	0 2	26.2
Milk Fat (%)		4.5	4.!	5	4.6
Milk Protein (%	.)	3.41	3.3	6 3	3.37
Milk Solids (kg	/d)	2.1	2.3	1 2.0	
AUTUMN	17 kg DM grass (HG)	13 kg DM grass (LG)	LG + 4 kg DM bale silage (GB)	LG + 4 kg DM pit silage (GP)	LG + 4 kg DM conc (GC)
AUTUMN Milk yield (kg/d)	DM grass	grass	bale silage	DM pit silage	DM conc

Milk Fat (%)		4.5	4.	5	4.6
Milk Protein (%)	3.41	3.3	3.36 3.37	
Milk Solids (kg/	/d)	2.1 2.1		2.0	
AUTUMN	17 kg DM grass (HG)	13 kg DM grass (LG)	LG + 4 kg DM bale silage (GB)	LG + 4 kg DM pit silage (GP)	LG + 4 kg DM conc (GC)
Milk yield (kg/d)	12.4ª	11.5 ^b	13.3°	13.3°	15.3 ^d
Milk fat (%)	4.91	5.08	4.98	4.67	4.79


AUTUMN	17 kg DM grass (HG)	13 kg DM grass (LG)	LG + 4 kg DM bale silage (GB)	LG + 4 kg DM pit silage (GP)	LG + 4 kg DM conc (GC)
Milk yield (kg/d)	12.4ª	11.5 ^b	13.3°	13.3°	15.3 ^d
Milk fat (%)	4.91	5.08	4.98	4.67	4.79
Milk protein (%)	3.88	3.76	3.75	3.78	3.88
Milk solids (kg/d)	1.08ª	1.01 ^b	1.12ª	1.09ª	1.29 ^c

High MUN is an indicator of excess protein in the diet


11 Mar

Spring Milk Urea Concentration

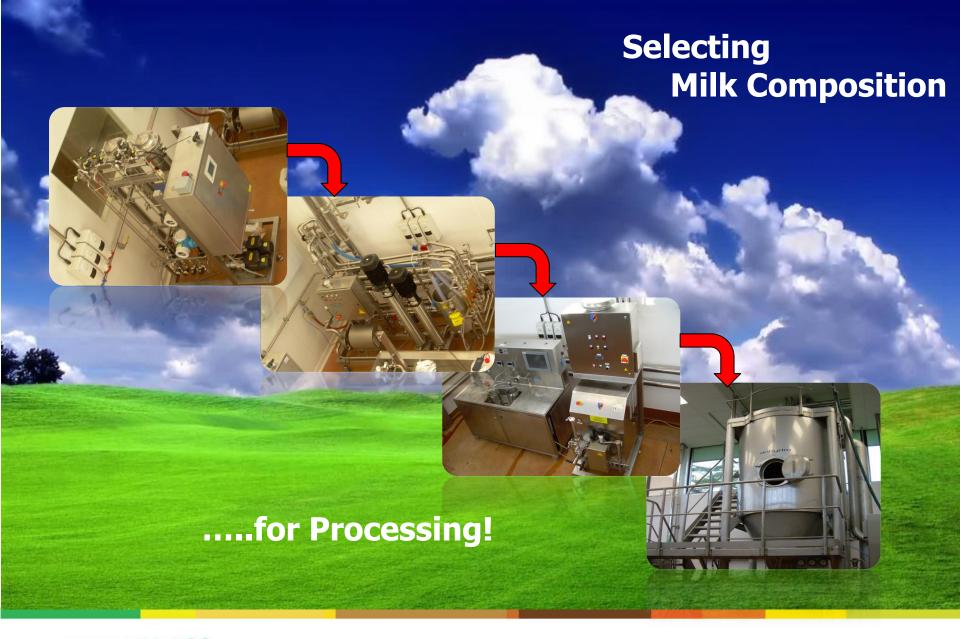
29 Apr

Autumn Milk Urea Concentration

Background

Research approach

Milk production


Milk processability

Spring Milk protein fractions

Caseins account for ~80% of total protein - a higher concentration of casein increases cheese yield (Wedholm et al., 2006)

13 kg DM grass SPRING4 kg DM concentrate	High CP	Medium CP	Low CP
a _{s1-} Casein (g/l)	11.31ª	11.69 ^{ab}	12.63 ^b
a _{s2} -Casein (g/l)	2.42	2.26	2.36
β-Casein (g/l)	7.25	8.67	8.44
к-Casein (g/l)	2.86	3,28	3.12
β-Lactoglobulin (g/l)	3.64ª	4.21 ^b	4.20b
a-Lactalbumin (g/l)	0.81	0.85	0.83

B-Lactoglobulin is associated with changes in milk heat stability

Autumn Milk protein fractions

LG + 4 kg DM

bale silage

(GB)

14.6

LG + 4 kg DM

pit silage

(GP)

14.2

LG + 4 kg

DM conc

(GC)

14.8

13 kg DM

grass

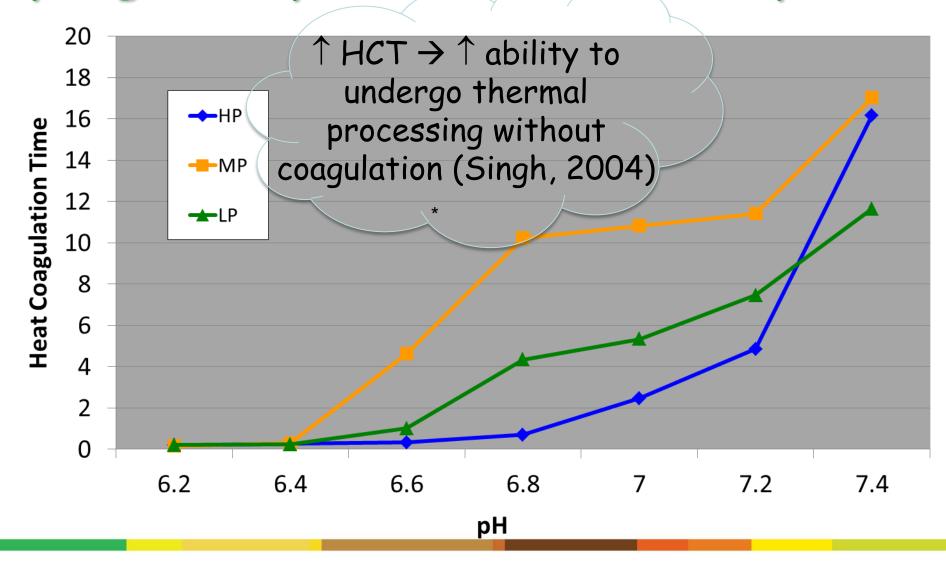
(LG)

13.6

17 kg

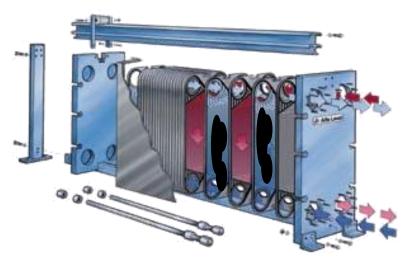
DM grass

(HG)


14.2

AUTUMN

 a_{s1} -Casein (g/l)


a _{s2} -Casein (g/l)	2.79	2.74	2.59	2.70	2.92	
β-Casein (g/l)	8.63	8.96	10.40	9.20	9.57	
к-Casein (g/l)	4.62	4.26	4.19	4.03	4.27	
β-Lactoglobulin (g/l)	4.83	4.58	4.84	4.68	4.81	
a-Lactalbumin (g/l)	0.58ª	0.60ª	0.67b	0.65 ^b	0 67b	
a-Lactalbumin -is major protein of human milk $\rightarrow \uparrow$ in proportion of a-LA in cow's milk helps it more closely mimic human milk (Lien, 2003) -is related to production of milk lactose, so may be positively associated with milk yield (Farrell Jr et al., 2004) and therefore be reflective of milk yields of treatments						

Spring Milk 'powder' heat stability

Consequences of low Heat stability – Fouling / Burn on

Protein (whey protein - denaturation/aggregation)

Protein (casein protein - precipitation, instability)

Increase in viscosity, back pressure on heat exchanger, etc.

Poor processability (protein burn on)

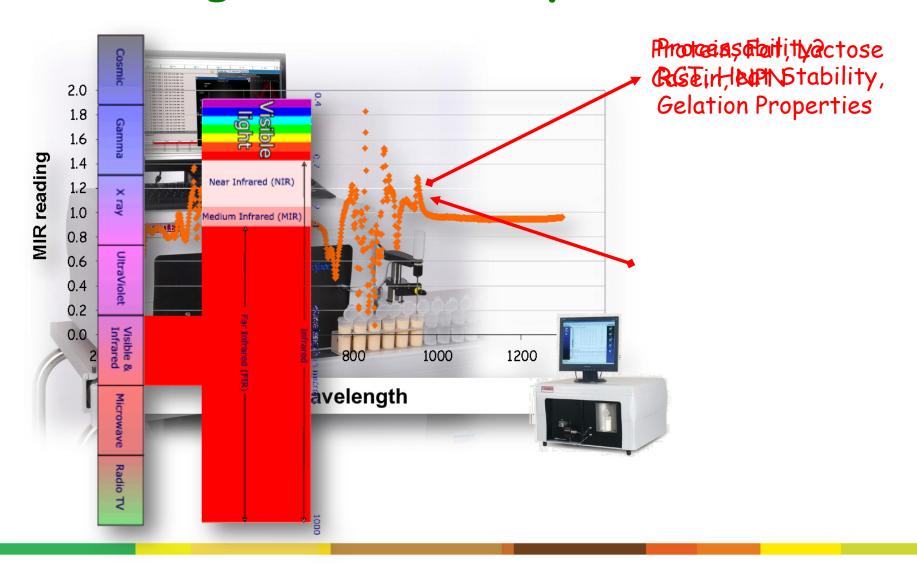
Manufacturing downtime

Background

Research approach

Milk production

Milk processability



Predicting Processability?

Mid-infrared Spectrometry

Breed quality data base (n=730)

Basic Composition

Fat

Protein

Casein

Urea

Lactose

Total Solids

Protein Profile

k-casein

a-s1-casein

a-s2-casein

β-casein

a-lactablumin

β-lactoglobulin a

B-lactoglobulin b

Amino Acids

Cysteic Acid

Aspartic Acid

Threonine

Serine

Glutamic Acid

Glycine

Alanine

Cysteine

Valine

Methionine

Isoleucine

Leucine

Tyrosine

Phenylalanine

Histidine

Lysine

NH3

Proline

Physical

Casein Micelle size

Colour

Lightness

Blueness

Yellowness

Functional

Heat stability

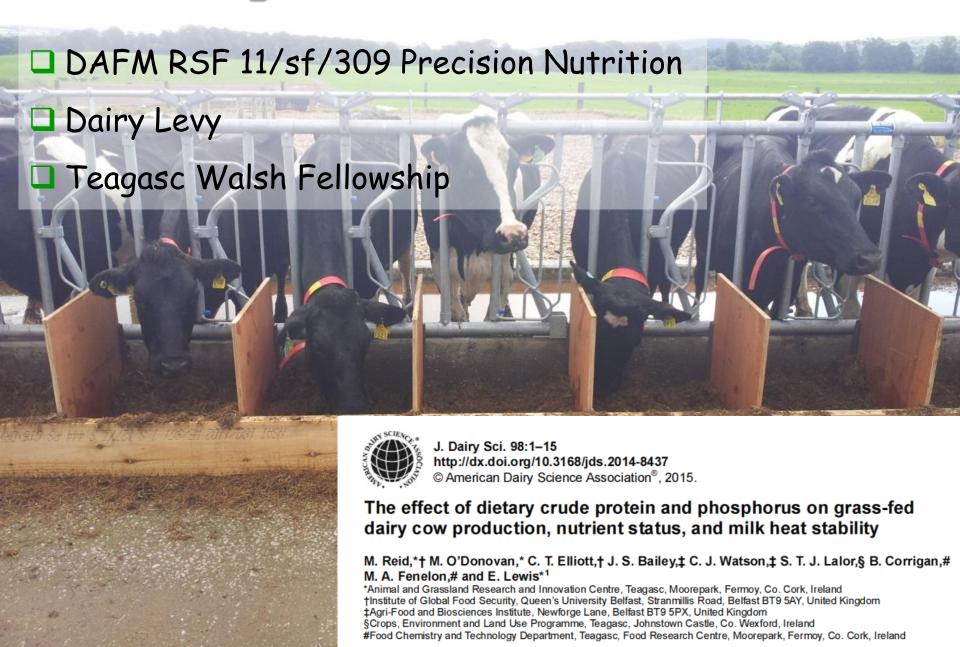
Native pH

Coagulation Properties

Rennet Coagulation time

Curd firmness

Minerals (n=140)


Full mineral profile

Correlation between gold standard and MIR-predicted traits

- □ Proteins 0.39 (beta LG a) to 0.69 (total LG)
- ☐ Amino Acids 0.22 (Threonine) to 0.75 (Glycine)
- □ Coagulation time (RCT) 0.74
- □Milk pH 0.84
- ☐ Heat stability 0.68

Acknowledgements

