

Irish Journal of Agricultural and Food Research

Evaluating the effectiveness of commercial teat disinfectant products sold in Ireland using the disc diffusion method

S.R. Fitzpatrick^{1,2}, M. Garvey², J. Flynn¹, B. O'Brien¹ and D. Gleeson^{1†}

¹Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland ²Department of Life Science, Institute of Technology Sligo, County Sligo, Ireland

Abstract

Evaluation of teat disinfectant products for their effectiveness against the most prevalent mastitis-causing bacteria is important to identify the most effective ingredients against specific bacterial strains. Ninety-six commercially available teat disinfectant products were tested against three bacterial strains associated with mastitis in Ireland (Staphylococcus aureus, Streptococcus uberis and Escherichia coli) using the disc diffusion method. Products were reclassified by active ingredients (n = 9) for analysis. These ingredient groups included: chlorhexidine (n = 25), chlorine dioxide (n = 5), diamine (n = 1), iodine (n = 13), iodine combined with lactic acid (n = 5), lactic acid (n = 15), lactic acid combined with chlorhexidine (n = 21), lactic acid combined with hydrogen peroxide (n = 1) and lactic acid combined with salicylic acid (n = 10). The ingredient group chlorine dioxide resulted in the greatest zones of inhibition for all three bacterial strains. An individual product containing a combination of lactic acid and hydrogen peroxide resulted in the greatest zone of inhibition for Sta. aureus and Str. uberis, whereas a specific product within the chlorine dioxide group resulted in the greatest zones of inhibition for E. coli. High concentrations of active ingredient did not necessarily increase the effectiveness for the majority of teat disinfectant products. It is possible to use the disc diffusion method to evaluate/screen a large number of teat disinfectant products prior to conducting field trials to establish the products' ability to reduce intramammary infections (IMI).

Keywords

Disc diffusion • mastitis • screening • teat disinfectant products

Introduction

Bovine mastitis or intramammary infection (IMI) is an inflammatory reaction which is caused by different microbial pathogens which can gain entry into the mammary gland through the teat canal (Berry & Meaney, 2006; Keane et al., 2013). However, despite decades of advances regarding the prevention and treatment of mastitis, it continues to be one of the main causes of impaired milk quality, decreased production, reduced profit and animal morbidity and mortality (Ruegg, 2012). There is a large variation in the pathogens identified within countries, which are associated with mastitis, and these differences may be due to different veterinary and laboratory services and farmer management practises (Zadoks & Fitzpatrick, 2009). In most countries, the most common bacteria associated with mastitis are Str. agalactiae, Str. dysgalactiae, Str. uberis, Str. aureus and Escherichia coli (Zadoks & Fitzpatrick, 2009). A study by Keane et al. (2013) identified Sta. aureus, Str. uberis and E. coli as the main bacteria associated with clinical mastitis on Irish dairy farms.

This study also found that Str. uberis and E. coli were more commonly associated with clinical mastitis than Sta. aureus. Implementation of an effective mastitis control plan can help to prevent and reduce incidence of mastitis and reduce horizontal transmission of bacteria from cow to cow and within the environment. These control measures include hygienic milking and housing conditions, routine milking machine maintenance, teat disinfection pre- and post-milking, dry cow therapy, isolation of infected animals and cow culling (Hillerton & Booth, 2018). Studies have reported that the use of premilking teat cleaning regimes, using teat disinfectants, can reduce the bacterial load on the teat skin surface (Gibson et al., 2008; Mišeikienė et al., 2015; Baumberger et al., 2016). Previous studies also showed that pre-milking teat disinfection helped to reduce mastitis caused by environmental bacteria (Pankey, 1989; Oliver et al., 1993a,b, 2001) and mastitis caused by Streptococcus spp. and Gram-negative bacteria (Oliver et al., 1993b). These studies were undertaken when

[†]Corresponding author: David Gleeson E-mail: David.Gleeson@teagasc.ie

cows were indoors; however, where cows were grazed on pastures, little to no improvement on mastitis incidence levels was observed (Williamson & Lacy-Hulbert, 2013; Gleeson *et al.*, 2018). Post-milking teat disinfection is important for the control of contagious mastitis in herds (Breen, 2019). Contagious bacteria tend to be spread from cow to cow during milking via the milking machine and by the milker's hands. A study by Williamson and Lacy-Hulbert (2013) demonstrated that cows receiving post-milking disinfection had a lower rate of IMIs, caused by *Sta. aureus, Str. uberis, Corynebacterium* spp. and coagulase-negative staphylococci, than cows that did not receive post-milking disinfection. The success of teat disinfection in reducing new IMIs may also be influenced by the product active ingredient.

At present, the main knowledge regarding teat disinfectants relates to iodine as it is a broad-spectrum disinfectant and has been proven to be effective against mastitis and new IMIs (Oliver et al., 1991; Boddie et al., 2004; Böhm et al., 2017). However, alternative ingredients to iodine are now desirable due to concerns regarding iodine residues in milk which may be destined for infant milk formula manufacturing. Unfortunately, little knowledge is known regarding the effectiveness of these ingredients and products within an Irish context. There are many test methods available to measure the effectiveness of teat disinfection products. For regulatory purposes, teat disinfection products are required to be evaluated by the BS EN 1656 laboratory test method, known as a European Standards test. The National Mastitis Council (NMC) recommends the use of the experimental challenge and natural exposure protocols as they are useful for demonstrating field efficacy in reducing new IMI and mastitis. However, these tests may be limited to showing efficacy against specific organisms present on individual farms (Lopez-Benavides et al., 2012). The disc diffusion laboratory method can be used to screen disinfection products against a broad range of mastitis pathogens (Garvey et al., 2017; Fitzpatrick et al., 2019a). Screening/testing products using such a method can identify effective products before time-consuming and expensive field tests are undertaken. The objective of this study was to independently screen the effectiveness of 96 commercially available teat disinfection products, against the three main bacteria associated with mastitis in Ireland, Sta. aureus, Str. uberis and E. coli, using the disc diffusion method.

Materials and methods

Teat disinfectant information

Ninety-six commercially available teat disinfectant products (Table 1), with different active ingredients of varying concentrations, were tested against mastitis-causing bacteria, using the disc diffusion method. The teat disinfectant products

were either ready-to-use (RTU) (n = 82), concentrate (conc.) products (n = 9) or required activation before use (n = 5). Concentrate products were diluted using sterile distilled water according to the manufacturer's recommendation to avoid possible issues with water hardness or contaminated water. Five chlorine dioxide-based products (products 11, 70, 89, 90 and 95) were mixed with an activator before use according to the manufacturer's recommendations. The disinfectant products used were recommended either for both pre-/post-milking teat disinfection (n = 49), pre-milking teat disinfection only (n = 3) or post-milking disinfection only (n = 44). Concentrations of active ingredients are declared where indicated by the manufacturer on the product label.

Bacterial strain identification

The bacteria applied in this study were isolated from the teat skin of cows within the Teagasc Moorepark research herd, by taking skin swab samples from lactating cows' teats using moistened cotton swabs, according to NMC (NMC, 2017) guidelines. The isolates were gram stained and bacterial identification was carried out using biochemical tests including lactose fermentation, motility test medium (Sigma-Aldrich, Dublin, Ireland), catalase and oxidase tests, tube coagulase (Sigma-Aldrich, Dublin, Ireland) and growth/reaction on various types of agars including blood agar (Sigma-Aldrich, Dublin, Ireland), MacConkey (Merck Millipore, Cork, Ireland), Baird Parker (Merck KGaA64271, Darmstadt, Germany) and modified Edwards agar (Oxoid 3M0027, Hampshire, UK), Simmons citrate agar (Sigma-Aldrich, Dublin, Ireland), CAMP esculin agar (Sigma-Aldrich, Dublin, Ireland) and triple sugar iron agar (Sigma-Aldrich, Dublin, Ireland). Analytical Profile Index-Staph (API-Staph Kit, bioMerieux, Marcy-l'Etoile, France) and API 20 tests (API, bioMerieux, Marcy-l'Etoile, France) were also used according to the manufacturer's instructions.

Disc diffusion method

The disc diffusion method was used to determine the ability of the teat disinfectant products to inhibit bacterial growth. This method was chosen based on a previous study that demonstrated that the method can effectively screen/evaluate a number of teat disinfectant products in a short period of time (Fitzpatrick *et al.*, 2019a).

The disc diffusion method was performed using the techniques as described by Fitzpatrick *et al.* (2019a). Each bacterial strain isolated was grown on Mueller Hinton (MH) agar (Sigma-Aldrich, Ireland) plates with blank filter paper discs (three per plate; Cruinn, Dublin, Ireland) impregnated with a different teat disinfectant product. The experiment was independently repeated over 3 d, with three plate replications for each product against each bacterial strain tested. A pilot study was performed to determine the inclusion of sterile skimmed milk or sterile bovine serum albumin (BSA) as an interfering

Product	#	Ingredient (w/w)	Pre or post
Arkshield ¹	7	5% Lactic acid/0.3% chlorhexidine	Pre/post
Arrabawn Udder Guard ¹	40	0.5% Chlorhexidine	Pre/post
Bacto-Lac ¹	31	5% Lactic acid/0.05% chlorhexidine	Pre/post
Barri-max ¹	65	2.4% Lactic acid	Post
Biolac Pre-Post ¹	44	0.25% Lactic acid/0.03% salicylic acid	Pre/post
Biolac Pre-Post ¹	59	0.25% Lactic acid/0.03% salicylic acid	Pre/post
Bisept ²	70	0.05% Chlorine dioxide	Pre/post
Blue Barrier Spray ¹	49	Lactic acid/0.6% chlorhexidine ³	Post
Blu-gard N Spray ¹	15	3.46% Lactic acid	Post
C-Dip ¹	61	0.53% Chlorhexidine	Post
Co-op Source Duo-Teat Shield ¹	39	2% Lactic acid/0.3% chlorhexidine	Pre/post
D 4 Iodine ⁴	19	0.5% Iodine	Post
Dairy Pro UltraDip ¹	74	3% Lactic acid	Post
DairyLac SA ¹	76	3% Lactic acid	Post
Deosan Mastocide ¹	32	0.5% Chlorhexidine	Post
Deosan Summer Teat Care ¹	33	0.425% Chlorhexidine	Post
Deosan Super Iodip⁴	34	0.5% Iodine	Post
Deosan Teat Foam Advance ¹	13	0.6% Chlorhexidine	Pre/post
Deosan Teatcare Plus ¹	14	0.425% Chlorhexidine	Post
Deosan Triathalon ¹	81	1.76% Lactic acid	Pre/post
Dermalac Emprasan ¹	27	0.25% Lactic acid/salicylic acid3	Pre/post
Dual Dip Supreme ¹	47	Lactic acid/0.6% chlorhexidine ³	Pre/post
Dual Dip ¹	45	2% Lactic acid/0.3% chlorhexidine	Pre/post
Duo-cel ¹	38	2.5% Lactic acid/0.3% chlorhexidine	Pre/post
Duogold ¹	17	2% Lactic acid/0.3% chlorhexidine	Pre/post
Duo-Teat Shield ¹	25	2% Lactic acid/0.3% chlorhexidine	Pre/post
Emprasan dual ¹	53	0.25% Lactic acid/salicylic acid ³	Pre/post
Flexigard Spray ¹	94	4% Lactic acid	Post
Fortress Protect Film ¹	73	3% Lactic acid/0.2% chlorhexidine	Post
Gold Glycodip XL ¹	62	0.5% Iodine/1% lactic acid	Post
Hamra Red ¹	12	0.42% Chlorhexidine	Post
Hexa-cel RTU ¹	42	0.52% Chlorhexidine	Pre/post
Hexaguard ¹	1	0.74% Chlorhexidine	Pre/post
Hexaklene R ¹	2	0.5% Chlorhexidine	Pre/post
Hexa-Spray ¹	82	0.5% Chlorhexidine	Pre/post
Hypraspray ¹	87	2% Lactic acid/0.03% chlorhexidine	Pre/post
Hypred Quick Spray ¹	20	2% Lactic acid/0.1% salicylic acid	Pre/post
loguard⁴	3	0.5% lodine	Post
loklar Multi ¹	92	0.25% lodine	Pre/post
lo-Shield D1	91	1.35% lodine	Post
Io-Shield Spray ¹	93	0.5% Iodine	Post
Kenocidin Spray and Dip ¹	9	0.5% Chlorhexidine	Post

Table 1: Test teat disinfectant product code and active ingredient, as declared by the manufacturer on product label

Table 1: Continued

Product	#	Ingredient (w/w)	Pre or post
Kenolac SD ¹	80	3.6% Lactic acid	Post
Kenolac ¹	10	3.6% Lactic acid	Post
Kenomint SD ¹	78	0.5% Chlorhexidine	Post
Kenomint ¹	77	0.5% Chlorhexidine	Post
Kenomix SD ²	89	0.0157% Chlorine dioxide	Post
Kenomix ²	11	0.0157% Chlorine dioxide	Post
Kenopure ¹	79	3.2% Lactic acid	Pre
Lactic Lather ¹	46	1.6% Lactic acid/hydrogen peroxide ³	Pre
Lacto dual ¹	36	2.5% Lactic acid/1.5% chlorhexidine	Pre/post
Lacto-cel ¹	35	2.4% Lactic acid	Pre/post
Lacto-Mil ¹	96	5% Lactic acid	Pre/post
Lactospray ¹	4	2.4% Lactic acid	Pre/post
Lanodip 4 XL ¹	30	0.5% Iodine/0.5% lactic acid	Post
Lanodip Pre-Post ¹	55	0.29% lodine/0.8% lactic acid	Pre/post
Lely Quaress-Cura ¹	43	3% Lactic acid/salicylic acid ³	Post
Luxdip 50B ¹	69	0.5% Iodine	Post
Masocare Platinum ¹	85	0.54% lodine	Pre/post
Masodine Concentrate ⁴	83	0.5% Iodine	Pre/post
Masodip Platinum ¹	84	0.436% Chlorhexidine	Pre/post
Maxadine C ⁴	8	0.5% Iodine	Post
Maxidine RTU ¹	37	0.5% Iodine	Post
Nano Dual ¹	28	1.93% Lactic acid/0.2% chlorhexidine	Pre/post
Novo Dual ¹	29	4% Lactic acid/0.27% chlorhexidine	Pre/post
Novodip ¹	60	4.9% Lactic acid/1.28% chlorhexidine	Post
Novospray ¹	54	4.9% Lactic acid/0.3% chlorhexidine	Post
Prefoam+ ¹	21	2% Lactic acid/0.1% salicylic acid	Pre
Protect Pre Post ¹	75	3% Lactic acid/0.25% chlorhexidine	Pre/post
PureChem Chlorhexidine Summer Grade1	52	1.49% Chlorhexidine	Pre/post
PureChem Chlorhexidine ¹	48	1.49% Chlorhexidine	Post
PureChem Dual Dip ¹	51	1% Lactic acid/1.49% chlorhexidine	Pre/post
PureChem Iodophor⁴	50	0.5% Iodine	Post
Quatro ¹	41	0.5% Chlorhexidine	Pre/post
SalvoDip B ¹	71	2.4% Lactic acid	Post
Salvohex ¹	67	2% Lactic acid/0.3% chlorhexidine	Post
Salvospray ¹	68	2.4% Lactic acid	Pre/post
SensoDip 50 ¹	16	0.5% Chlorhexidine	Post
SensoDip ¹	72	0.5% Chlorhexidine	Pre/post
Sensospray ¹	66	0.5% Chlorhexidine	Post
Silkdip⁴	24	0.5% lodine	Post
Summer C-Dip ¹	58	0.5% Chlorhexidine	Post
Super Cow Teat Foam ¹	26	0.6% Diamine	Pre/post

Product	#	Ingredient (w/w)	Pre or post
Supergold ¹	18	0.5% Chlorhexidine	Pre/post
Supreme ¹	64	2.5% Lactic acid/0.37% chlorhexidine	Pre/post
Sure Spray Duo ¹	6	2% Lactic acid/0.3% chlorhexidine	Pre/post
Surespray ¹	5	0.5% Chlorhexidine	Pre/post
Synofilm ¹	88	8% Lactic acid	Post
Teat Gard C ¹	63	0.5% Chlorhexidine	Pre/post
TriCide Gold ¹	57	0.15% lodine/1% lactic acid	Pre/post
TriCide ¹	56	0.15% lodine/1% lactic acid	Post
Uddergold ²	90	0.32% Acidified sodium chlorite	Post
Valiant ²	95	0.038% Sodium chloride	Post
Virolac Film ¹	23	2% Lactic acid/0.1% salicylic acid	Post
Virolac Spray ¹	86	2% Lactic acid/0.1% salicylic acid	Pre/post
Virolac Concentrate ⁴	22	2% Lactic acid/0.1% salicylic acid	Pre/post

Table 1: Continued

¹Ready to use (RTU).

²Requires activation before use.

³The concentration of some active ingredients for combination products was not declared by the manufacturer.

⁴Concentrate

= product number.

substance to imitate the environment that the teat disinfectants would be used in. In this pilot study, the disc diffusion method was modified to allow for the addition of the aforementioned interfering substances. This modification involved adding the adjusted bacterial suspension to the interfering substance/ organic matter suspension. The method was then carried out as described above. The zone of no growth (zone of inhibition) (measured in millimetres [mm], using a digital calliper [RS digital calliper 600/880, Mitutoyo Digimatic, Hampshire, UK]) around the disc is a measure of the ability of the teat disinfectant product to inhibit the growth of the test bacterial strain.

Statistical analysis

Statistical analysis was carried out using SAS for Windows, version 9.4 (SAS Institute Inc., Cary, NC, USA; SAS, 2014). The results were analysed using the PROC GLIMMIX procedure. Pair-wise comparisons were adjusted for multiplicity effect using simulation procedures to adjust *P*-values. Residual checks were made to ensure assumptions of analysis were met. This was used to determine the difference in susceptibility or resistance of bacterial species and differences in zones of inhibition between teat disinfectant products within ingredient groups. Products used within the study were reclassified by active ingredients (n = 9) to minimise/control the occurrence of type II errors during analysis. Comparisons between ingredient groups and between products within each ingredient group were compared using LSMEANS in the PROC GLIMMIX

procedure. These ingredient groups included: chlorhexidine (n = 25), chlorine dioxide (n = 5), diamine (n = 1), iodine (n = 13), iodine combined with lactic acid (n = 5), lactic acid (n = 15), lactic acid combined with chlorhexidine (n = 21), lactic acid combined with hydrogen peroxide (n = 1) and lactic acid combined with salicylic acid (n = 10).

Results

The bacteria isolated from teat skin swab samples and identified in this study were found to be *Sta. aureus*, *Str. uberis* and *E. coli*. Furthermore, the pilot study showed that the use of either of the two different interfering substances did not have a negative impact on the effectiveness of the teat disinfectants used. Therefore, no interfering substance was included in the current study.

The average zone of inhibition for each product group can be seen in Figure 1. Lactic acid combined with hydrogen peroxide achieved the largest zones of inhibition for all three bacterial strains (*Str. uberis* [27.9 mm], *Sta. aureus* [25.1 mm] and *E. coli* [19.3 mm]). This was followed by the ingredient group chlorine dioxide (*Str. uberis* [21.3 mm], *Sta. aureus* [20.0 mm] and *E. coli* [18.1 mm]). Chlorhexidine group and diamine resulted in the smallest bacterial inhibitions for *Str. uberis* (17.9 mm and 16.1 mm, respectively), with a combination of lactic acid and salicylic acid achieving

Figure 1. Least squares means of the zones of inhibition (mm) of (A) *Str. uberis*, (B) *Sta. aureus* and (C) *E. coli* across all teat disinfectant active ingredient groups tested by the disc diffusion method. Error bars indicate SEM. ^{*a,b,c,d,e,f*} Inhibitions not sharing the same superscript for each bacterial strain were significantly different (P < 0.05).

significantly smaller zones of inhibition against *Sta. aureus* (13.2 mm) compared to chlorine dioxide (P < 0.05). For *E. coli*, the ingredient iodine and lactic acid resulted in a smaller level of bacterial inhibition (10.9 mm) compared

to a combination of lactic acid and hydrogen peroxide and chlorine dioxide (P < 0.05).

Within the study, two ingredient groups (diamine and lactic acid combined with hydrogen peroxide) contained only one

product each. The ingredient group, diamine, demonstrated a smaller level of bacterial inhibition, with an overall average of 16.1 mm, 14.5 mm and 13.6 mm for *Str. uberis*, *Sta. aureus* and *E. coli*, respectively. The ingredient group which included a combination of lactic acid and hydrogen peroxide achieved a large bacterial inhibition against *Str. uberis* (27.9 mm), *Sta. aureus* (25.1 mm) and *E. coli* (19.3 mm). Bacterial inhibition of teat disinfectant products against different bacterial strains within each ingredient group can be observed in Table 2.

Chlorhexidine

Twenty-five products belonged to the chlorhexidine group. These products ranged in chlorhexidine concentrations from 0.42% to 1.49% w/w chlorhexidine. For Str. uberis, product 1 (0.74% w/w chlorhexidine) resulted in the largest zone of inhibition of 21.4 mm, which was significantly larger than product 48 (1.49% w/w chlorhexidine), resulting in an inhibition of 15.6 mm (P < 0.05). For Sta. aureus, product 5 (0.5% w/w chlorhexidine) resulted in the largest inhibition of 17.1 mm, which differed significantly from product 82 (0.5% w/w chlorhexidine; 14.0 mm) (P < 0.05). For E. coli, product 2 (0.5% w/w chlorhexidine) resulted in the largest inhibition of 20.6 mm. This differed significantly from product 82, which resulted in a smaller inhibition of 12.3 mm (P < 0.05). Within this ingredient group, a trend was observed for the effectiveness of teat disinfectant products against the three bacterial strains. Product 1 observed the largest inhibition for Str. uberis (21.4 mm) and resulted in the second and third largest inhibitions for Sta. aureus (17.7 mm) and E. coli (18.3 mm), respectively.

Chlorine dioxide

The chlorine dioxide ingredient group consisted of five different teat disinfectant products. These products ranged in chlorine dioxide concentrations from 0.0157% to 0.038% w/w. For *Str. uberis, Sta. aureus* and *E. coli,* product 95 (0.038% w/w chlorine dioxide) resulted in the largest zones of inhibition of 22.8 mm, 22.4 mm and 21.5 mm, respectively. Furthermore, product 70 (0.05% w/w chlorine dioxide) resulted in a smaller inhibition of 19.4 mm, 18.2 mm and 12.2 mm for *Str. uberis, Sta. aureus* and *E. coli,* respectively, compared to product 95 (P < 0.05).

Diamine

Only one teat disinfectant product contained the ingredient diamine (0.6% w/w diamine; product 26). This product resulted in zones of inhibition of 16.1 mm, 14.5 mm and 13.6 mm for *Str. uberis, Sta. aureus* and *E. coli,* respectively.

lodine

There were 13 iodine products tested within this study. These products ranged from a concentration of 0.25% w/w

to 1.35% w/w iodine. For *Str. uberis*, product 8 (0.5% w/w iodine) resulted in the largest zone of inhibition of 23.0 mm. Product 92 (0.25% w/w iodine) resulted in a smaller inhibition of 12.1 mm, compared to product 9 (P < 0.05). For both *Sta. aureus* and *E. coli*, product 91 (1.35% w/w iodine) resulted in the largest inhibition of 18.2 mm and 16.3 mm, respectively. Similar to *Str. uberis*, product 92 resulted in a smaller inhibition for *Sta. aureus* (9.2 mm) and *E. coli* (7.5 mm), which differed significantly from product 91 (P < 0.05). Product 24 (0.5% w/w iodine) resulted in the second largest inhibition for *Str. uberis* (21.6 mm) and *Sta. aureus* (17.1 mm) and the fourth largest zone of inhibition for *E. coli* (12.0 mm).

lodine and lactic acid

A total of five products which contained iodine combined with lactic acid were evaluated. These products ranged in concentrations from 0.15% w/w to 0.5% w/w iodine combined with 0.8% w/w to 1% w/w lactic acid. No significant difference was observed for *Str. uberis* among the iodine and lactic acid products. However, product 30 (0.5% w/w iodine combined with 0.5% w/w lactic acid) resulted in the numerically largest inhibition of 21.9 mm. Furthermore, product 57 (0.15% w/w iodine combined with 1% w/w lactic acid) resulted in the smallest inhibition (20.3 mm) for *Str. uberis*. Product 30 resulted in the largest inhibition of 16.5 mm and 12.1 mm against *Sta. aureus* and *E. coli*, respectively. Product 57 (0.15% w/w iodine combined with 1% w/w lactic acid) resulted in the smallest inhibition of 13.0 mm and 10.0 mm for *Sta. aureus* and *E. coli*, respectively, compared to product 30 (P < 0.05).

Lactic acid

Within the study, 15 products which contained various concentrations of lactic acid were tested. These products ranged in lactic acid concentration from 1.76% w/w to 8% w/w lactic acid. For Str. uberis and E. coli, product 94 (4% w/w lactic acid) resulted in the numerically largest inhibition of 22.4 mm and 18.2 mm, respectively. Product 88 (8% w/w lactic acid) showed a significantly smaller inhibition of 16.6 mm for Str. uberis (compared to product 94 [22.4 mm] [P < 0.05]). For E. coli, product 10 (3.6% w/w lactic acid) showed a significantly smaller inhibition of 10.0 mm compared to product 94 (18.2 mm) (P < 0.05). Products 10 and 88 both had the numerically largest inhibition of 19.3 mm for Sta. aureus, which for both products was significantly larger than that for product 96 (5% w/w lactic acid [13.7 mm]) (P < 0.05). Across the lactic acid teat disinfectant products, product 94 resulted in the numerically largest inhibitions against both Str. uberis and E. coli, and the third largest inhibition for Sta. aureus.

Lactic acid and chlorhexidine

Of the 96 products tested, 21 of these products contained a combination of lactic acid and chlorhexidine. These products

 Table 2: Least squares means of the zones of inhibition (mm) for 96 teat disinfectant products, categorised by ingredient group, against

 Str. uberis, Sta. aureus and E. coli

Product	#	Ingredient (w/w)	Str. uberis	Sta. aureus	E. coli
Chlorhexidine products					
Arrabawn Udder Guard ¹	40	0.5% Chlorhexidine	16.6 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	15.3 ^{b,c,d}	16.2 ^{b,c,d}
C-Dip ¹	61	0.53% Chlorhexidine	17.6 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	15.7 ^{b,c,d}	15.6 ^{b,c,d,e}
Deosan Mastocide ¹	32	0.5% Chlorhexidine	19.1 ^{<i>a,b,c,d,e,f</i>}	17.4 ^{<i>a,b,c</i>}	16.7 ^{b,c,d}
Deosan Summer Teat Care ¹	33	0.425% Chlorhexidine	17.4 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	16.7 ^{<i>a,b,c,d</i>}	17.9 ^{a,b,c,d}
Deosan Teat Foam Advance ¹	13	0.6% Chlorhexidine	19.5 ^{<i>a,b,c,d,e</i>}	16.1 ^{<i>a,b,c,d</i>}	16.3 ^{b,c,d}
Deosan Teatcare Plus ¹	14	0.425% Chlorhexidine	15.8 ^g	16.9 ^{<i>a,b,c,d</i>}	17.6 ^{a,b,c,d}
Hamra Red ¹	12	0.42% Chlorhexidine	17.8 ^{<i>b,c,d,e,f,g</i>}	16.0 ^{b,c,d}	15.9 ^{b,c,d,e}
Hexa-cel RTU ¹	42	0.52% Chlorhexidine	15.9 ^{f,g}	16.1 ^{<i>a,b,c,d</i>}	15.1 ^{b,c,d,e}
Hexaguard ¹	1	0.74% Chlorhexidine	21.4ª	17.7 ^{a,b}	18.3 ^{a,b,c}
Hexaklene R ¹	2	0.5% Chlorhexidine	20.9 ^{<i>a,b,c</i>}	15.9 ^{b,c,d}	20.6ª
Hexa-Spray ¹	82	0.5% Chlorhexidine	17.3 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	14.0 ^d	12.3 ^e
Kenocidin Spray/Dip ¹	9	0.5% Chlorhexidine	17.0 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	16.2 ^{<i>a,b,c,d</i>}	14.2 ^{d,e}
Kenomint ¹	77	0.5% Chlorhexidine	17.7 ^{c,d,e,f,g}	16.0 ^{b,c,d}	16.3 ^{b,c,d}
Kenomint SD ¹	78	0.5% Chlorhexidine	19.1 ^{<i>a,b,c,d,e,f</i>}	14.6 ^{c,d}	14.5 ^{c,d,e}
Masodip Platinum ¹	84	0.436% Chlorhexidine	16.4 ^{<i>e,f,g</i>}	17.9 ^{a,b}	14.4 ^{d,e}
PureChem Chlorhexidine ¹	48	1.49% Chlorhexidine	15.6 ^g	15.0 ^{b,c,d}	14.8 ^{b,c,d,e}
PureChem Chlorhexidine Summer Grade ¹	52	1.49% Chlorhexidine	17.4 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	16.3 ^{<i>a,b,c,d</i>}	16.3 ^{b,c,d}
Quatro ¹	41	0.5% Chlorhexidine	16.1 ^{<i>f</i>,<i>g</i>}	16.6 ^{<i>a,b,c,d</i>}	16.5 ^{b,c,d}
SensoDip ¹	72	0.5% Chlorhexidine	17.0 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	15.9 ^{b,c,d}	15.9 ^{b,c,d,e}
SensoDip 50 ¹	16	0.5% Chlorhexidine	18.4 ^{<i>a,b,c,d,e,f,g</i>}	17.4 ^{<i>a,b,c</i>}	17.3 ^{a,b,c,d}
Sensospray ¹	66	0.5% Chlorhexidine	16.9 ^{<i>d</i>,<i>e</i>,<i>f</i>,<i>g</i>}	17.1 ^{<i>a,b,c,d</i>}	14.9 ^{b,c,d,e}
Summer C-Dip ¹	58	0.5% Chlorhexidine	19.4 ^{<i>a,b,c,d,e,</i>}	15.1 ^{b,c,d}	14.5 ^{c,d,e}
Supergold ¹	18	0.5% Chlorhexidine	21.0 ^{a,b}	16.5 ^{<i>a,b,c,d</i>}	18.5 ^{<i>a,b</i>}
Surespray ¹	5	0.5% Chlorhexidine	19.8 ^{<i>a,b,c,d</i>}	19.2ª	18.2 ^{<i>a,b,c</i>}
Teat Gard C ¹	63	0.5% Chlorhexidine	16.0 ^{<i>f.g</i>}	15.2 ^{b,c,d}	15.4 ^{b,c,d,e}
Chlorine dioxide products					
Bisept ²	70	0.05% Chlorine dioxide	19.4°	18.5 ^b	12.2 ^c
Kenomix ²	11	0.0157% Chlorine dioxide	22.6ª	18.2 ^b	19.3 ^{<i>a,b</i>}
Kenomix SD ²	89	0.0157% Chlorine dioxide	21.0 ^b	21.4 ^{a,b}	20.5 ^{a,b}
Uddergold ²	90	0.32% Acidified sodium chlorite	20.9 ^{b,c}	19.5 ^{a,b}	17.3 ^b
Valiant ²	95	0.038% Sodium chloride	22.8ª	22.4ª	21.5ª
Diamine products					
Super Cow Teat Foam ¹	26	0.6% Diamine	16.1	14.5	13.6
lodine products					
D 4 lodine ³	19	0.5% lodine	21.4 ^{<i>a,b,c</i>}	16.1 ^{<i>a,b,c</i>}	10.9 ^b
Deosan Super Iodip ³	34	0.5% lodine	20.0 ^{b,c,d,e}	15.2 ^{b,c,d,e}	11.7 ^₅
loguard ³	3	0.5% lodine	21.0 ^{<i>a,b,c,d</i>}	13.5 ^{c,d,e}	10.2 ^{b,c}
loklar Multi ¹	92	0.25% lodine	12.1 ^g	9.2 ^f	7.5°
Io-Shield D ¹	91	1.35% lodine	19.0 ^{<i>d</i>,<i>e</i>,<i>f</i>}	18.2ª	16.3ª
Io-Shield Spray ¹	93	0.5% lodine	17.3 ^f	14.5 ^{b,c,d,e}	12.8 ^b

Product	#	Ingredient (w/w)	Str. uberis	Sta. aureus	E. coli			
Luxdip 50B1	69	0.5% lodine	19.2 ^{<i>c,d,e,f</i>}	13.7 ^{c,d,e}	11.4 ^{<i>b</i>}			
Masocare Platinum ¹	85	0.54% lodine	19.3 ^{<i>c,d,e,f</i>}	14.5 ^{b,c,d,e}	12.4 ^{<i>b</i>}			
Masodine Concentrate ³	83	0.5% Iodine	20.7 ^{<i>a,b,c,d,e</i>}	15.5 ^{b,c,d}	10.8 ^b			
Maxadine C ³	8	0.5% lodine	23.0ª	15.8 ^{<i>a,b,c,d</i>}	11.9 ^b			
Maxidine RTU ¹	37	0.5% lodine	18.9 ^{<i>d</i>,<i>e</i>,<i>f</i>}	13.3 ^{d,e}	11.4 ^b			
PureChem lodophor ³	50	0.5% lodine	18.6 ^{<i>e</i>,<i>f</i>}	12.6 ^f	10.5 ^b			
Silkdip ³	24	0.5% Iodine	21.6 ^{<i>a,b</i>}	17.1 ^{a,b}	12.0 ^b			
lodine and lactic acid products								
Gold Glycodip XL ¹	62	0.5% Iodine/1% lactic acid	21.6ª	15.3 ^{a,b}	12.0ª			
Lanodip 4 XL ¹	30	0.5% lodine/0.5% lactic acid	21.9ª	16.5ª	12.1ª			
Lanodip Pre-Post ¹	55	0.29% lodine/0.8% lactic acid	21.1ª	13.3 ^{b,c}	10.1 ^{<i>b</i>}			
TriCide ¹	56	0.15% Iodine/1% lactic acid	21.1ª	13.0 ^c	10.0 ^b			
TriCide Gold ¹	57	0.15% Iodine/1% lactic acid	20.3ª	13.2 ^c	10.1 ^{<i>b</i>}			
Lactic acid products								
Barri-max ¹	65	2.4% Lactic acid	19.7 ^{b,c,d}	16.3 ^{<i>a,b,c</i>}	13.6 ^b			
Blu-gard N Spray ¹	15	3.46% Lactic acid	19.9 ^{b,c,d}	15.6 ^{b,c}	11.4 ^{b,c,}			
Dairy Pro UltraDip ¹	74	3% Lactic acid	17.1 ^{<i>e</i>,<i>f</i>}	16.1 ^{<i>a,b,c</i>}	12.1 ^{b,c,}			
DairyLac SA ¹	76	3% Lactic acid	18.8 ^{<i>d,e,f</i>}	14.5 ^c	11.8 ^{b,c,}			
Deosan Triathalon ¹	81	1.76% Lactic acid	19.7 ^{b,c,d}	14.2 ^c	11.4 ^{b,c,}			
Flexigard Spray ¹	94	4% Lactic acid	22.4ª	19.2ª	18.2ª			
Kenolac ¹	10	3.6% Lactic acid	22.3ª	19.3ª	10.0 ^d			
Kenolac SD ¹	80	3.6% Lactic acid	19.a ^{c,d,e}	15.0 ^{b,c}	13.2 ^{b,c}			
Kenopure ¹	79	3.2% Lactic acid	21.6 ^{<i>a</i>,<i>b</i>}	16.4 ^{<i>a,b,c</i>}	11.2 ^{b,c,}			
Lacto-cel ¹	35	2.4% Lactic acid	19.9 ^{b,c,d}	15.9 ^{b,c}	12.1 ^{b,c,}			
Lacto-Mil ¹	96	5% Lactic acid	19.1 ^{c,d,e}	13.7°	10.6 ^{c,c}			
Lactospray ¹	4	2.4% Lactic acid	21.3 ^{<i>a,b,c</i>}	19.2ª	10.2 ^d			
SalvoDip B ¹	71	2.4% Lactic acid	19.6 ^{b,c,d}	16.6 ^{<i>a,b,c</i>}	11.5 ^{b,c,}			
Salvospray ¹	68	2.4% Lactic acid	18.8 ^{<i>d,e,f</i>}	17.8 ^{a,b}	11.5 ^{b,c,}			
Synofilm ¹	88	8% Lactic acid	16.6 ^{<i>f</i>}	19.3ª	17.3ª			
Lactic acid and chlorhexidine products								
Arkshield ¹	7	5% Lactic acid/0.3% chlorhexidine	21.6 ^{a,b,c}	18.9 ^{<i>a,b,c</i>}	15.4 ^{b,c,}			
Bacto-Lac ¹	31	5% Lactic acid/0.05% chlorhexidine	18.8 ^{<i>c</i>,<i>d</i>,<i>e</i>,<i>f</i>}	15.9 ^{d,e}	14.1 ^{c,a}			
Blue Barrier Spray ¹	49	Lactic acid/0.6% chlorhexidine ⁴	22.3ª	21.7ª	20.3ª			
Co-op Source Duo-Teat Shield	39	2% Lactic acid/0.3% chlorhexidine	18.1 ^{<i>d,e,f</i>}	16.5 ^{c,d,e}	15.4 ^{b,c,}			
Dual Dip ¹	45	2% Lactic acid/0.3% chlorhexidine	18.2 ^{<i>d</i>,<i>e</i>,<i>f</i>}	16.0 ^{<i>d</i>,<i>e</i>}	15.0 ^{b,c,}			
Dual Dip Supreme ¹	47	Lactic acid/0.6% Chlorhexidine⁴	21.8 ^{a,b}	21.3 ^{a,b}	18.5 ^{a,t}			
Duo-cel ¹	38	2.5% Lactic acid/0.3% chlorhexidine	18.5 ^{<i>d</i>,<i>e</i>,<i>f</i>}	16.4 ^{c,d,e}	16.2 ^{b,c}			
Duogold ¹	17	2% Lactic acid/0.3% chlorhexidine	19.7 ^{<i>a,b,c,d,e</i>}	16.8 ^{c,d,e}	17.3 ^{a,b,}			
				10 00do	10.000			

2% Lactic acid/0.3% chlorhexidine

3% Lactic acid/0.2% chlorhexidine

2% Lactic acid/0.03% chlorhexidine

25

73

87

Duo-Teat Shield¹

Hypraspray¹

Fortress Protect Film¹

Table 2: Continued

16.8^{a,b,c}

13.9^{c,d}

12.2^d

16.9^{c,d,e}

17.6^{c,d,e}

16.7^{c,d,e}

17.9^{*d,e,f*}

20.3^{*a,b,c,d,e*}

19.1^{b,c,d,e}

Product	#	Ingredient (w/w)	Str. uberis	Sta. aureus	E. coli
Lacto dual ¹	36	2.5% Lactic acid/1.5% chlorhexidine	18.2 ^{<i>d</i>,<i>e</i>,<i>f</i>}	15.2 ^e	16.6 ^{b,c}
Nano Dual ¹	28	1.93% Lactic acid/0.2% chlorhexidine	21.6 ^{<i>a,b,c</i>}	16.9 ^{c,d,e}	14.8 ^{c,d}
Novo Dual ¹	29	4% Lactic acid/0.27% chlorhexidine	20.8 ^{<i>a,b,c,d</i>}	17.5 ^{c,d,e}	15.6 ^{b,c,d}
Novodip ¹	60	4.9% Lactic acid/1.28% chlorhexidine	19.3 ^{<i>b</i>,<i>c</i>,<i>d</i>,<i>e</i>}	19.1 ^{<i>a,b,c</i>}	16.0 ^{b,c}
Novospray ¹	54	4.9% Lactic acid/0.3% chlorhexidine	20.0 ^{<i>a,b,c,d,e</i>}	18.4 ^{b,c,d}	16.3 ^{b,c}
Protect Pre Post ¹	75	3% Lactic acid/0.25% chlorhexidine	21.7 ^{<i>a,b</i>}	18.2 ^{c,d}	14.0 ^{c,d}
PureChem Dual Dip ¹	51	1% Lactic acid/1.49% chlorhexidine	16.2 ^f	16.3 ^{<i>c,d,e</i>}	14.5ª
Salvohex ¹	67	2% Lactic acid/ 0.3% chlorhexidine	17.8 ^{e,f}	16.2 ^{c,d,e}	16. 8 ^{a,b,c}
Supreme ¹	64	2.5% Lactic acid/0.375% chlorhexidine	19.2 ^{<i>b,c,d,e</i>}	16.8 ^{c,d,e}	15.4 ^{b,c,d}
Sure Spray Duo ¹	6	2% Lactic acid/0.3% chlorhexidine	18.6 ^{<i>d</i>,<i>e</i>,<i>f</i>}	17.2 ^{c,d,e}	15.4 ^{b,c,d}
Lactic acid and hydrogen peroxide products					
Lactic Lather ¹	46	1.6% Lactic acid/ hydrogen peroxide ⁴	27.9	25.1	19.3
Lactic acid and salicylic acid products					
Biolac Pre-Post ¹	44	0.25% Lactic acid/0.03% salicylic acid	19.7 ^{<i>a,b</i>}	16.0ª	11.4 ^b
Biolac Pre-Post ¹	59	0.25% Lactic acid/0.03% salicylic acid	21.0ª	15.1ª	11.8 ^{b,c}
Dermalac Emprasan ¹	27	0.25% Lactic acid/salicylic acid⁴	21.1ª	14.3 ^{<i>a,b,c</i>}	11.0 ^{b,c}
Emprasan dual ¹	53	0.25% Lactic acid/salicylic acid⁴	19.6 ^{a,b}	14.8 ^{<i>a,b</i>}	16.0ª
Hypred Quick Spray ¹	20	2% Lactic acid/0.1% salicylic acid	17.0 ^{c,d}	9.7 ^d	9.7°
Lely Quaress-Cura ¹	43	3% Lactic acid/salicylic acid4	18.9 ^{<i>a,b,c</i>}	15.9ª	12.4 ^b
Prefoam+ ¹	21	2% Lactic acid/0.1% salicylic acid	18.1 ^{b,c,d}	11.7 ^{b,c,d}	11.1 ^{b,c}
Virolac Concentrate ³	22	2% Lactic acid/0.1% salicylic acid	16.8 ^{c,d}	11.2 ^{c,d}	10.8 ^{b,c}
Virolac Film ¹	23	2% Lactic acid/0.1% Salicylic acid	17.2 ^{c,d}	11.7 ^{b,c,d}	11.0 ^{b,c}
Virolac Spray ¹	86	2% Lactic acid/0.1% salicylic acid	16.0 ^{<i>d</i>}	11.3 ^{c,d}	10.3 ^{b,c}

Table 2: Continued

¹Ready to use (RTU).

²Requires activation before use.

³Concentrate

⁴The concentration of some active ingredients for combination products was not declared by the manufacturer.

a.b.c.d.e.f.gInhibitions not sharing the same superscript in a column within an ingredient group were significantly different (P < 0.05).

= product number.

ranged from 1% w/w to 5% w/w lactic acid combined with 0.03% w/w to 1.5% w/w chlorhexidine. Within the lactic acid and chlorhexidine group, product 49 (lactic acid combined with 0.6% w/w chlorhexidine) resulted in the largest inhibitions against *Str. uberis, Sta. aureus* and *E. coli* of 22.3 mm, 21.7 mm and 20.3 mm, respectively. Furthermore, product 47 (lactic acid combined with 0.6% w/w chlorhexidine) resulted in the second largest inhibitions for *Str. uberis* (21.8 mm), *Sta. aureus* (21.3 mm) and *E. coli* (18.5 mm) which did not differ significantly from product 49. In comparison to products 49 and 47, product 51 (1% w/w lactic acid combined with 1.49% w/w chlorhexidine) resulted in a smaller inhibition of 16.2 mm for *Str. uberis*. Alternatively, product 36 (2.5% w/w lactic acid combined with 1.5% w/w chlorhexidine) showed the smallest inhibition for *Sta. aureus* (15.2 mm) and product 87 (2% w/w

lactic acid combined with 0.03% w/w chlorhexidine) showed the smallest inhibition for *E. coli* (12.2 mm), both of which were significantly different from products 49 and 45 (P < 0.05).

Lactic acid and hydrogen peroxide

Only one product contained a combination of the ingredients lactic acid and hydrogen peroxide (product 46; 1.6% w/w lactic acid combined with hydrogen peroxide). This product resulted in inhibitions of 27.9 mm, 25.1 mm and 19.3 mm for *Str. uberis, Sta. aureus* and *E. coli*, respectively.

Lactic acid and salicylic acid

Within the trial, 10 products contained a combination of lactic acid and salicylic acid. These products ranged from concentrations of 0.25% w/w to 3% w/w lactic acid combined

with 0.03% w/w to 0.1% w/w salicylic acid. For *Str. uberis*, product 27 (0.25% w/w lactic acid combined with salicylic acid) resulted in a significantly greater zone of inhibition of 21.1 mm compared to product 86 (2% w/w lactic acid combined with 0.1% w/w salicylic acid [16.0 mm]) (P < 0.05). For *Sta. aureus*, product 44 (0.25% w/w lactic acid combined with 0.03% w/w salicylic acid) resulted in the largest zone of inhibition of 16.0 mm. This was significantly different to product 20 (2% w/w lactic acid combined with 0.1% w/w salicylic acid) which had the smallest zone of inhibition of 9.7 mm (P < 0.05). For *E. coli*, product 53 (0.25% w/w lactic acid combined with salicylic acid) showed the largest zone of inhibition of 16.0 mm, which differed significantly from product 20 with the smallest zone of inhibition of 9.7 mm (P < 0.05).

While all individual products were not statistically compared, some products were observed to have numerically higher inhibitions against each bacterial strain tested than others within the study. Product 46 was found to result in the largest zones of inhibition for both *Str. uberis* (27.9 mm) and *Sta. aureus* (25.1 mm), with product 95 (0.038% w/w chlorine dioxide) achieving the largest zone of inhibition for *E. coli* (21.5 mm).

Discussion

Mastitis control programmes recommend the use of teat disinfection, with some recommending both pre- and postmilking disinfection. By testing teat disinfectant products against bacteria that have previously been identified as the most prevalent mastitis-causing bacteria in Ireland (Keane *et al.*, 2013), the effectiveness of these products can be estimated for use in Ireland. The results of this study show that the range of teat disinfection products showed variation in bacterial inhibition against *Str. uberis, Sta. aureus* and *E. coli*, with some individual products and ingredient groups resulting in greater bacterial inhibitions than others.

The chlorine dioxide ingredient group showed the greatest zones of inhibition for *Str. uberis, Sta. aureus* and *E. coli*, which was significantly different to the iodine group for all three bacterial strains. Chlorine dioxide (1%) was previously shown to have large log percentage reductions against *Sta. aureus, E. coli* and *Str. uberis* when tested using the excised teat method (Enger *et al.*, 2015). Furthermore, Santos *et al.* (2016) demonstrated, *in vitro*, that a 2.5% chlorine dioxide product resulted in reduction levels comparable to a 0.6% iodine product at four different exposure times (15 s, 30 s, 60 s and 300 s) against 50 *Sta. aureus* strains. However, it has also been stated that chlorine dioxide may be less effective when applied to the teat skin as it can be highly reactive towards organic matter which may be present on the skin surface (Lopes *et al.*, 2012).

Two ingredient groups within the study contained just one product each; the variation in product numbers within product ingredient groups may represent a limitation within the study. These ingredient groups include diamine (product 26) and lactic acid combined with hydrogen peroxide (product 46). The product containing diamine resulted in small zones of inhibition for all three bacterial strains. This was similar to a previous study where the same diamine product resulted in some of the smallest zones of inhibition against three Sta. aureus isolates, a Str. uberis isolate and an E. coli isolate (Fitzpatrick et al., 2019a). However, when this product was applied to teat skin, it resulted in some of the highest reductions of staphylococcal and streptococcal isolates naturally present on the teat skin (Fitzpatrick et al., 2019b). This could be due to the ingredient diamine being less affected by the presence of organic matter than other ingredients and it is also stable at a wide range of pH (Mondin et al., 2014). This may allow products having this ingredient to be less affected by organic matter on teat skin. In this study, product 46 containing lactic acid combined with hydrogen peroxide had the greatest zones of inhibition for Str. uberis and Sta. aureus. Previously, two hydrogen peroxide products (0.5%) have been shown to achieve a >5 log reduction against Sta. aureus, Str. uberis and E. coli, with these products also being comparable to two chlorine dioxide products (Lopez-Benavides et al., 2012). Furthermore, the use of a hydrogen peroxide product for both pre- and postmilking was shown to reduce the bacterial contamination on teat skin by 65% (Miseikiene et al., 2019). The use of hydrogen peroxide within teat disinfectant products proves to be effective at reducing bacterial load on teat skin but its impact on teat skin condition must be evaluated.

Additionally, a product containing 0.038% w/w chlorine dioxide (product 95) was found to achieve the greatest zones of inhibition (21.5 mm) against *E. coli*. Also, a 1% chlorine dioxide product resulted in a large log reduction against an *E. coli* strain, which was comparable to both a 0.5% and 1% iodophor teat disinfectant, when using the excised teat method (Enger *et al.*, 2015). Furthermore, the use of a chlorine dioxide (0.0157%) product reduced naturally present coliforms on the teat skin by 87.9% (Fitzpatrick *et al.*, 2019b). However, there may be some negative aspects associated with the use of chlorine dioxide products. All chlorine dioxide products used in this study had to be activated/mixed prior to use; also, depending on the product, the time limit for recommended usage after activation ranged from 24 h up to 26 d.

In the current study, only two ingredient groups showed a trend in effectiveness with increasing concentrations of the active ingredients. These groups included iodine and a combination of iodine and lactic acid. Within the iodine ingredient group, the highest concentration of iodine (1.35% w/w) resulted in the largest zones of inhibition for both *Sta. aureus* and *E. coli*, which was significantly different to the

lowest concentration of 0.25% w/w iodine, which was also effective for *Str. uberis*. In the iodine combined with lactic acid group, the concentrations of 0.5% w/w iodine with 0.5% w/w lactic acid and 0.5% w/w iodine with 1% w/w lactic acid resulted in some of the numerically largest inhibitions for all three bacterial strains. A decrease in effectiveness could be observed within these products as iodine levels were reduced. However, products which contained higher concentrations of ingredients, within the other ingredient groups, for example, product 48 (1.49% w/w chlorhexidine), did not always result in the highest level of reduction as would be expected. Limited information with regard to emollient levels in products was available; therefore, the impact of those teat condition agents on the effectiveness of the products could not be evaluated.

The disc diffusion method used in the current study allows for an effective screening of a large number of teat disinfectant products in a short period of time. However, laboratory methods do not evaluate the true efficacy of a teat disinfectant product. Therefore, further studies must be performed to determine the ability of the products to reduce: (1) bacterial load on the teat skin, (2) new IMIs and (3) impact on teat skin condition.

Conclusion

This study has shown that there is a range of alternative teat disinfectant products available which reduce bacterial growth comparable to iodine-based products. The concentration of active ingredient did not influence the effectiveness in the majority of teat disinfectant products. Additionally, different products/ingredients were more effective against specific strains of bacteria within the study. The disc diffusion method is an effective method to screen a large number of teat disinfectant products, but field trials would be required to fully determine the products' effectiveness in reducing the bacterial load on teat skin and the ability of the products to reduce IMIs.

Acknowledgements

The authors gratefully acknowledge funding from Teagasc (project 0006). Sarah Fitzpatrick was in receipt of a Teagasc Walsh Scholarship (Ref: 2016054). Teat disinfection products listed are not an indication of the regulatory status of the products. Check the Department of Agriculture, Food and the Marine (DAFM) Biocidal Products Register (http://www.pcs.agriculture.gov.ie/registers/biocidalproductregisters/) and Health Products Regulatory Authority (HPRA) (http://www.hpra.ie/homepage/veterinary) before purchase.

References

- Baumberger, C., Guarin, J.F. and Ruegg, P.L. 2016. Effect of 2 different premilking teat sanitation routines on reduction of bacterial counts on teat skin of cows on commercial dairy farms. *Journal of Dairy Science* 99: 2915–2929.
- Berry, D.P. and Meaney, W.J. 2006. Interdependence and distribution of subclinical mastitis and intramammary infection among udder quarters in dairy cattle. *Preventative Veterinary Medicine* **75**: 81–91.
- Boddie, R.L., Owens, W.E., Foret, C.J. and Janowicz, P. 2004. Efficacy of a 0.1% iodine teat dip against *Staphylococcus aureus* and *Streptococcus agalactiae* during experimental challenge. *Journal of Dairy Science* 87: 3089–3091.
- Böhm, F., Wente, N. and Krömker, V. 2017. The efficacy of a foaming iodine-based pre-milking teat disinfectant. *Milchwissenschaft* 70: 6–9.
- Breen, J. 2019. The importance of teat disinfection in mastitis control. *Livestock* 24: 122–128.
- Enger, B.D., Fox, L.K., Gay, J.M. and Johnson, K.A. 2015. Reduction of teat skin mastitis pathogen loads: diferences between strains, dips and contact times. *Journal of Dairy Science* **98**: 1354–1361.
- Fitzpatrick, S., Garvey, M., Flynn, J., Jordan, K., O' Brien, B. and Gleeson, D. 2019a. Screening commercial teat disinfectants against bacteria isolated from bovine milk using disk diffusion. *Veterinary World* **12**: 629–637.
- Fitzpatrick, S.R., Garvey, M., Flynn, J., Jordan, K. and Gleeson, D. 2019b. Are some teat disinfectant formulations more effective against specific bacteria isolated on teat skin than others? *Acta Veterinaria Scandinavica* 61: 1–5.
- Garvey, M., Curran, D. and Savage, M. 2017. Efficacy testing of teat dip solutions used as disinfectants for the dairy industry: antimicrobial properties. *International Journal Dairy Technology* **70**: 179–187.
- Gibson, H., Sinclair, L.A., Brizuela, C.M., Worton, H.L. and Protheroe, R.G. 2008. Effectiveness of selected premilking teat-cleaning regimes in reducing teat microbial load on commercial dairy farms. *Letters in Applied Microbiology* **46**: 295–300.
- Gleeson, D., Flynn, J. and O' Brien, B. 2018. Effect of pre-milking teat disinfection on new mastitis infection rates of dairy cows. *Irish Veterinary Journal* 71: 1–8.
- Hillerton, J.E. and Booth, J.M. 2018. The five-point mastitis control plan—a revisory tutorial! *Proceedings of the 57th NMC Annual Meeting Proceedings, Arizona, USA*, page 3–19.
- Keane, O.M., Budd, K.E., Flynn, J. and McCoy, F. 2013. Pathogen profile of clinical mastitis in Irish milk-recording herds reveals a complex aetiology. *Veterinary Record* **173**: 17.
- Lopes, I., Brito, D., Ferreira, E., Teles, F. and Costa, F. 2012. In vitro sensitivity of *Staphylococcus sp.* bacteria to antimicrobials and disinfectants used for control of bovine mastitis. *Journal of Bioscience and Medicine* **2**: 1–5.

- Lopez-Benavides, M., LeJune, D., Mateus, C., Faltynowski, A. and Hemling, T.C. 2012. In vitro efficacy of non-iodine teat disinfectants. *Proceedings of the 51st NMC Annual Meeting, St. Pete Beach, Florida, USA*, pages 195–196.
- Mišeikienė, R., Rudejevienė, J. and Gerulis, G. 2015. Effect of premilking antiseptic treatment on the bacterial contamination of cow teats' skin. *Bulgarian Journal of Veterinary Medicine* 18: 159–166.
- Miseikiene, R., Tusas, S., Biziene, R., Kerziene, S., Micinski, J. and Matusevicius, P. 2019. Influence of teat disinfection with iodine preparation on bacterial contamination of teats, hygenic quality and content of iodine in milk. *Journal of Elementology* 25: 225–236.
- Mondin, A., Bogialli, S., Venzo, A., Favaro, G., Badocco, D. and Pastore, P. 2014. Characterization and quantification of N-(3aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques. *Chemosphere* **95**: 379–386.
- NMC. 2017. "Laboratory Hanbook on Bovine Mastitis". National Mastitis Council, Minnesota, USA, 84 pages.
- Oliver, S.P., Gillespie, B.E., Lewis, M.J., Ivey, S.J., Almeida, R.A., Luther, D.A. and Dowlen, H.H. 2001. Efficacy of a new premilking teat disinfectant containing a phenolic combination for the prevention of mastitis. *Journal of Dairy Science* **84**: 1545–1549.
- Oliver, S.P., Lewis, M.J., Ingle, T.L., Gillespie, B.E. and Matthews, K.R. 1993a. Prevention of bovine mastitis by a premilking teat disinfectant containing chlorous acid and chlorine dioxide. *Journal* of Dairy Science **76**: 287–292.

- Oliver, S.P., Lewis, M.J., Ingle, T.L., Gillespie, B.E., Matthews, K.R. and Dowlen, H.H. 1993b. Premilking teat disinfection for the prevention of environmental pathogen intramammary infections. *Journal of Food Protection* 56: 852–855.
- Oliver, S.P., Lewis, M.J., King, S.H., Gillespie, B.E., Ingle, T., Matthews, K.R. and Pankey, J.W. 1991. Efficacy of a low concentration iodine postmilking teat disinfectant against contagious and environmental mastitis pathogens in 2 dairy herds. *Journal of Food Protection* 54: 737–742.
- Pankey, J.W. 1989. Pre-milking udder hygiene. *Journal of Dairy Science* **72**: 1308–1312.
- Ruegg, P.L. 2012. New perspectives in udder health management. Veterinary Clinics of North America: Food Animal Practice 28: 149–163.
- Santos, R., Souza, F., Vasconcelos, C., Cortez, A., Rosa, D., Jardim, A. and Cerqueira, M. 2016. In vitro efficacy of teat antiseptics against *Staphylococcus aureus* strains isolated from bovine mastitis. *Semina. Ciências Agrárias* 37: 1997–2002.
- SAS. 2014. SAS/STAT® 9.4 User's Guide, 2nd edition. SAS Institute Inc., Cary, NC, USA.
- Williamson, J.H. and Lacy-Hulbert, S.J. 2013. Effect of disinfecting teats post-milking or pre- and post-milking on intramammary infection and somatic cell count. *New Zealand Veterinary Journal* 61: 262–268.
- Zadoks, R. and Fitzpatrick, J. 2009. Changing trends in mastitis. *Irish* Veterinary Journal 62: 59–70.