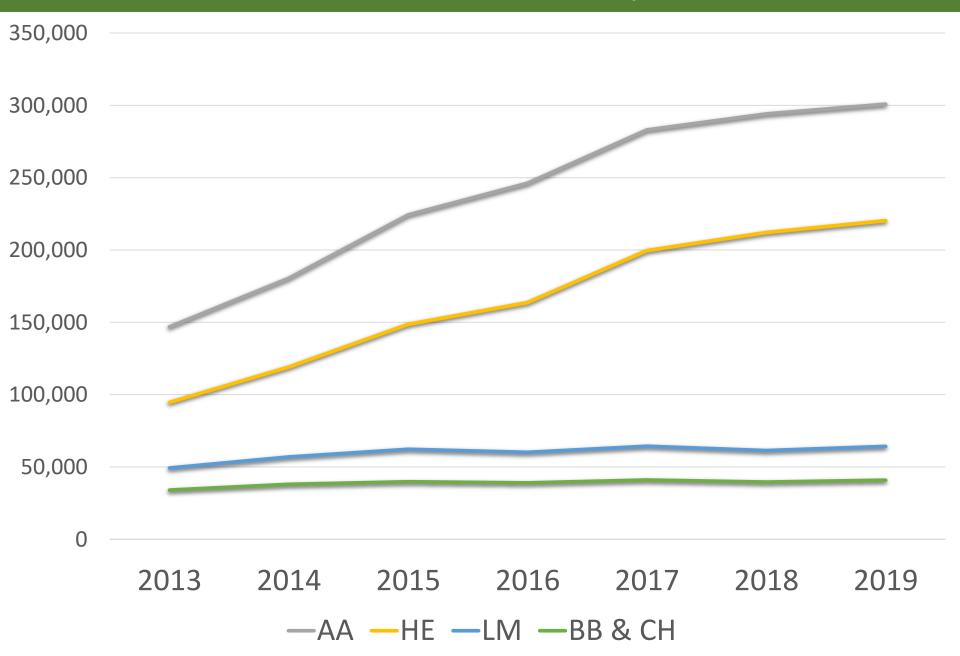
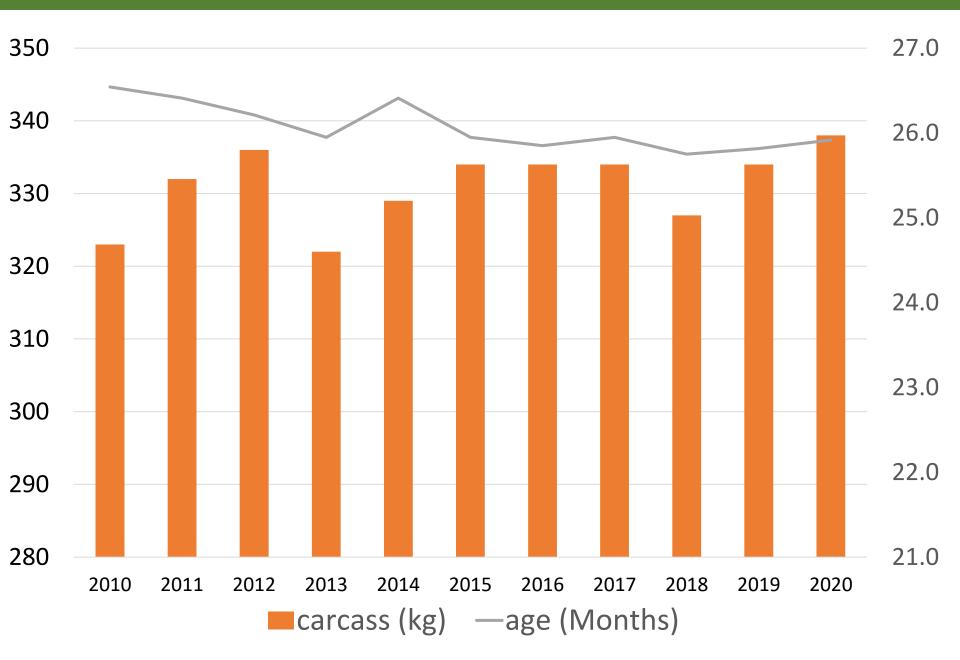
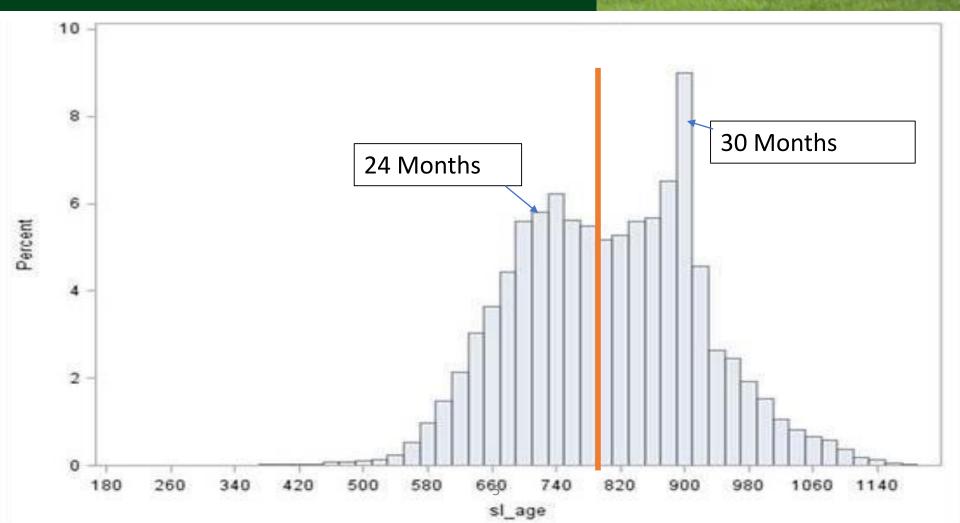

Increasing efficiency of Dairy beef




TRANSFORMATION OF THE IRISH LIVESTOCK SECTOR

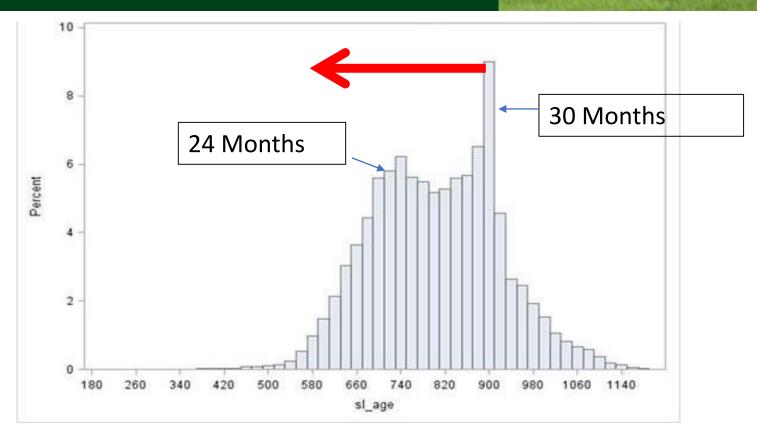
Beef breeds from dairy herd


National performance of Beef * Dairy (< 30 months)

AGE AT SLAUGHTER OF ANGUS STEERS

1

Sales r


Significant opportunity

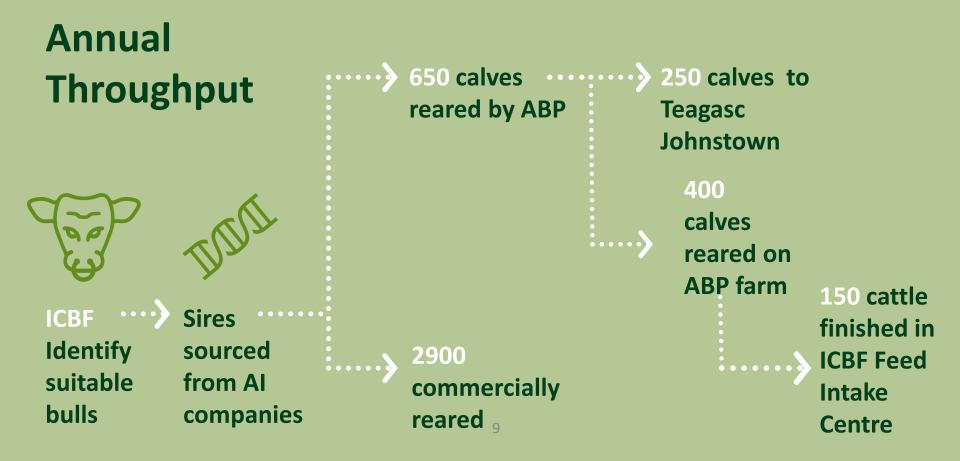
2021 750 k beef * dairy calves Producing 251 kt of prime beef Approx 3.0 mt of CO_{2eq}

<u>2030?</u> 1.1 m calves 350 k t beef 4.5 mt of CO_{2eq}

AGE AT SLAUGHTER OF ANGUS STEERS

 Climate Action Plan and Teagasc Marginal Abatement Cost Curve (MACC) highlight opportunity from reduced age at₇slaughter.

Gene Ireland Dairy-beef collaboration



HOW THE PROCESS WORKS

3 YEAR RESULTS

4.2

SIRE CARCASS PERFORMANCE

Angus significant variation within breed.

SIRE	Carcass wt.(kg)	CONF (1 - 15)	FAT (1 - 15)	VALUE €)	AGE (months)
ZLT	279	7.18 (R-)	7.58 (3+)	1090	21.3
ZTP	281	5.74 (O+)	8.12 (4-)	1074	21.2
AA2025	283	5.99 (O+)	8.00 (4-)	1089 ↑	21.0
KYA	294	5.64 (O+)	7.56 (3+)	1133	21.1
AA2387	298	5.70 (O+)	6.97 (3+)	1134	20.6
AA2123	300	4.94 (O=)	7.12 (3+)	112/217	21.1
AA2192	303	5.25 (O=)	8.43 (4-)	€17	3 20.9
GZJ	303	7.02 (R-)	8.33 (4-)	12 differer	20.7
RGZ	303	6.00 (O+)	7.52 (3+)	117in carca	21.0
AA4057	304	5.94 (O+)	7.44 (3+)	1167 value	20.7
TKR	304	6.28 (O+)	7.74 (4-)	1188	20.9
AA2203	311	5.87 (O+)	7.58 (3+)	1196	21.0
<u>AA2309</u>	317	6.37 (O+)	8.42 (4-)	1202 🕴	20.6
FPI	323	5.70 (O+)	11 7.33 (3+)	1247	21.5

E A

CARBON; What impact can **animal breeding** and **farm systems** have on lower beef emissions ?

BACKGROUND TO CARBON RESEARCH

- The carbon analysis was conducted by AbacusBio using data, ABP R&D Farm, Teagasc and the ICBF database.
- The focus was on enteric methane from birth to slaughter in Angus x Dairy calves when comparing

systems

1: ENHANCED GENETICS AND CARBON EFFICIENCY

Results Trial Farm	Emissions Intensity (kg CO ₂ e/kg cwt) Within breed	Emissions Intensity (kg CO ₂ e/kg cwt) Across breed			
Worst Sire	8.53	8.53			
Average Sire	7.96	7.83			
Best Sire	7.29	6.69			
Best vs. Average (%)	-9%	-17%			
*Based on a subset of animals reared on the ABP Trial farm and finished in the ICBE Tully feed intake centre Sasc 14					

2: CARBON EFFICIENCY BETWEEN FARMING SYSTEMS

	Gross emissions (kg CO ₂ e) Lifetime	Emissions Intensity (kg CO ₂ e/kg cwt)	Increase in kg CO ₂ e/kg cwt (compared to 20-month ABP Farm)
20-month ABP Farm Performance	2543	7.93	0
Avg. animal (26.5 Mts)	3498	10.76	+2.83 (36%)

2: Carbon Efficiency Impact

- Emissions from agriculture **20.5 mt**
- Approximate reduction of **2.5 mt** required by 2030
- 750k beef * dairy calves annually (1.1m by 2030)
- 1 month younger slaughter = 180 kg CO_{2e} reduction per animal
- Nationally worth 135 kt (198 KT by 2030)

3: NATIONAL CARBON REDUCTION POTENTIAL

A 1Mt CO_2 e emission reduction potential if the system was applied across the national Dairy x Beef Herd.

	National Average	Average ABP	High ABP
Age (months)	26	21	21
Carcass Weight	322	321	338
Carcass Grade	0+/=3+	O+/=3+	O+/=3+
Physical Stocking Rate (LU/ha)	2.5	3.33	3.33
Economic returns			
Net Margin per Ha€)	487.1	638.7	727.0
Net Margin per Animal €)	205.8	217.1	274.7
Carbon Footprint (kg/Kg	11 21	8.1	6.06
Total Footprint (000 tonnes)	2592	1861	1458
abp	17		COSOSC AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

4: CLIMATE ACTION PLAN

- The genetic enhancement within farm reduces enteric emissions by up to 9% (within breed) and up to 17% (across breed).
- Additionally we have seen that moving the age at slaughter profile forward by 2 months would add a further 10% reduction in enteric emissions.
- Combined these have a material impact in supporting the Teagasc MACC with an overall abatement potential of 1Mt CO_2e in Dairy x Beef

A MORE SUSTAINABLE PRODUCTION MODEL

Right Genetics + Right system = More Sustainable Production through reduced Age of

Slaughter

Economic Sustainability

- Improved returns for farmers from between €150 & €200 on animal carcass value.
- Reduced cost of production (€58 /month)

Environmental Sustainability

- Potential to reduce enteric emissions (within breed) by up to 9% on the same farm (best v average).
- Potential to reduce enteric emissions by up to 36% between farm systems (within breed).
- The potential to reduce up to 1Mt CO₂e reduction across the national dairy x beef herd.*

Days to Slaughter

- Currently no trait on 'days to slaughter' in breeding goals
- Huge amount of costs are linked (€1.91/day)
 - Maintenance
 - Capital tied up
 - Opportunity costs of facilitates
 - (Depending on time of year)
 - Labour
 - Contractor etc
- Emissions (~ 6 kg CO2_{eq}/day)

Conclusion

- Improved farm management can lead to reduced age at slaughter
 - National Dairy-beef campaign to improve management
- Selection of better bulls can breed animals for
 - reduced age at slaughter
 - Increased efficiency
 - Increased profitability
- Urgent need to include age at slaughter in breeding goals
 - Increase farm profitability

Teagasc Prese Reduce environmental footprint

