

Macro Minerals

Magnesium (Mg): Magnesium plays a crucial role in mobilising calcium from bones and increasing gut absorption, to reduce milk fever. Low levels of magnesium can also cause slow calving. Magnesium is not stored in the body, so it is very important that it be fed right up to calving.

After calving Mg supplementation is required especially on lush spring or autumn grass to prevent grass tetany.

Phosphorous (P): Makes up approx. 30% of total minerals in the body. A phosphorous deficiency can severely affect reproduction causing silent heats, irregular oestrus and low conception rates. Low phosphorous is also associated with pica – i.e. eating stones etc.

Sodium (Na): Aids in nutrient transfer, waste removal, involved in muscle and heart contraction, rumen and blood pH. Deficiency signs are urine licking, reduced male fertility, lower milk production and depraved eating behaviour.

Calcium (Ca): Calcium maintains normal muscle function and a deficiency can cause difficult calvings and retained placentas. Obviously once a cow is lactating the requirement for calcium increases dramatically, it is a deficiency in calcium that causes milk fever. A cow is unable to physically consume her calcium requirement, she has to mobilise it from her own bones. In order for her to be able to do this post calving, she has to start pre calving. Magnesium aids in this process and this is why minerals high in magnesium are fed pre calving. If calcium is fed pre calving, it meets her pre-calving requirement and she won't have started the process of mobilising calcium from her bones and this will lead to a deficiency after calving, therefore - **Do not feed calcium pre calving.**

Micro Minerals

Copper (Cu): Deficiency can lead to small weak calves, scours and decreased milk. In weanlings, it can cause poor growth rates.

<u>Selenium (Se)</u>: One of the few elements that can pass through the placenta from the cow to the calf. It is important as a deficiency can cause muscular dystrophy (weakening and wasting of muscle). Some areas are high in Se, so you should test your silage to ensure you do not cause a toxicity. A deficiency can also cause an issue with retained placentas.

Iodine (I): Deficiency can cause small weak calves, dead or hairless calves, or calves that do not want to suck. The animal will have low immunity. It can also lead to poor reproductive performance. It is also not stored in the body and needs to be fed right up to calving.

Cobalt (Co): Involved in the synthesis of B12 by the rumen, deficiencies are more often seen in sheep. Can cause a rough coat, poor appetite and anaemia.

<u>Manganese (Mn)</u>: A deficiency can affect growth, bone formation and the nervous system leading to poor growth, reproduction and bowing of the joints.

Zinc (Zn): Plays a role in the immune system and repair of damaged tissues, while it is also involved in the synthesis and metabolism of proteins and carbohydrates, teat keratin formation. A deficiency can lead to poor skin, mastitis, slow healing of wounds, bad hooves and stiff joints. It can also lead to lower conception rates.

Vitamins

Vitamin A: Increases disease resistance and stimulates the immune system. Cows that have a deficiency in vitamin A can also produce dead, weak or blind calves because vitamin A is needed for normal growth and development including growth of the foetus. Again it is passed through the colostrum. Can also cause retained placentas.

Vitamin D3: Essential in calcium and phosphorous metabolism. Promotes growth and mineralisation of healthy bones, therefore plays an important role in the prevention of milk fever.

Vitamin E: Required for good health and immune function. If fed pre calving it elevates the level in colostrum and helps to keep your calves heathy. It does not pass through the placenta, so calves must get adequate colostrum.

Oxide v's Sulphate Minerals

Bioavailability of sulphates and chlorides is generally greater than bioavailability of oxides. One exception is magnesium oxide, which is absorbed well enough to be used in beef cattle minerals. However, avoid mineral supplements that use copper oxide, which is poorly absorbed. Iron oxide is also poorly absorbed and is generally used to add colour to the mineral mix.

Boluses: Boluses will only cover trace elements, they do not cover macro minerals as macro minerals are fed in grams, the requirement is too large to be covered by boluses or injectables.

Catch crops: Bolus with a high lodine bolus to cover length on crop, have a good mineral thereafter. Catch crops are high in calcium, have cows removed at least a month pre calving.

What are protected minerals?

Minerals interact with one another in the diet and some may cause others to be bound in the rumen and therefore they are not able to be absorbed or is unavailable to the animal. A common example is high molybdenum which locks up copper. In this scenario, you can use what is called protected cooper, which basically means that it is already bound at manufacturing to another compound allowing it to pass though the rumen and be absorbed in the small intestine. These are call organic or chelated forms.

Table 1: Showing Suckler Cow requirement pre calving (Higher spec dairy mineral: feed to suckler cow at100gms per day)

Macro Minerals	Required g/day	What you see on label	Feeding 100grams/day	Feeding 120gms/day	
*Magnesium	17 - 20g	17%	17g	20g	If potassium levels are high in silage may need to increase to 30g
Calcium	Og	0 – 2%	Og	Og	
**Phosphorous	4.5g	4.0%	4g	4.8g	>3% if feeding straw
Sodium	15g	13%	13g	16g	
Micro Minerals / Trace Elements	Required mg/day	What you see on label	Feeding 100grams/day	Feeding 120gms/day	
Copper***	200 – 400mg	2,700 mg/kg	270 mg	324 mg	1/3 protected if high Mo, Su, Fe see note
Selenium	4 – 6mg	50 mg/kg	5 mg	6 mg	Issue re toxicity
Iodine	20 – 60mg	500 mg/kg	50 mg	60 mg	NB for sucking reflex
Cobalt	5 – 10mg	100 mg/kg	10 mg	12 mg	
Manganese	335 – 415mg	1,000 mg/kg	100 mg	120 mg	
Zinc****	335 – 600mg	5,400 mg/kg	540 mg	648 mg	1/3 protected if high Fe
Vitamins	Required iu/day				
А		400,000 iu/kg	400,000 iu	480,000 iu	
D3		100,000 iu/kg	10,000 iu	12,000 iu	NB in Milk Fever
E		2,000 iu/kg	200 iu	240 iu	Keep higher on straw diet

The lower end of the scale is for routine feeding, the higher end if advised if stock are at risk of a severe deficiency.

*If potassium (K) levels are high in silage, could have to increase magnesium levels to 30 – 40g

**If feeding straw ensure the phosphorous level is >3%

***If you have high Molybdenum (Mo) >3.0ppm, Sulphur (S) >0.3% or Iron (Fe) >400ppm, then having protected Cu can be an advantage

****If you have high Iron (Fe) >400ppm, then having protected Zn can be an advantage

Last year's minerals: if bags are clean, dry and unbroken – feed first, it's the Vitamins and organic elements that will go off first.

Cost per tonne:

Every extra €200 per tonne of mineral will cost an extra €1.20 per cow for a 60-day period.

Mineral cost €1200 per tonne is €1.20 per kg. Feed 100gms per day for 60 days = 6KG. Total cost €7.20

Mineral cost €1400 per tonne is €1.40 per kg. Feed 100gms per day for 60 days = 6KG. Total cost €8.40

Feeding out:

- Feed for 60 days pre calving or longer. Many problems with minerals are caused by feeding the incorrect rate for too short a time, not by the spec of the mineral itself. Measure out the total needed and adjust if the number of animals change. It is a good practical guide to monitor the number of bags being used a 25kg bag should feed 35 cows for 1 week.
- Dust on top of the silage, all cows must be able to feed at the same time. Best if split and fed morning and evening.
- Feed post calving until turned out to grass. Post calving feed higher calcium mineral to help with milk production.

Examples

Analytical Constituents

Constituent	%	
Calcium	<1.00	Excellent levels of
Phosphorous	4.00	
Sodium	12.50	Macro minerals
Magnesium	25.00	

Composition: Magnesium Oxide, Sodium Chloride, Magnesium Phosphate

Additives Per Kg

Vitamins	Per Kg	Per 100 g
3a672a Vitamin A	400,000 IU	40,000 IU
3a671 Vitamin D3	300,000 IU	30,000 IU
3a700 Vitamin E (alphatocopherol)	7,500 mg	750 mg
Natural Anti-Oxidants (Vitamin E Equivalent)	2,500 mg	250 mg
Vitamin B12	1,500 µg	150 µg
Trace Elements	Per Kg	Per 100 g
lodine as 3b202 calcium lodate Anhydrous	500 mg	50 mg
Cobalt as 3b304 Coated Granulated Cobalt Carbonate	80 mg	8 mg
Copper as 3b405 Copper Sulphate Pentahydrate	1,500 mg	150 mg
Chelate as 3b407 Copper Chelate of Protein Hydrolysates	1,500 mg	150 mg
Manganese as 3b502 Manganese Oxide	4,500 mg	450 mg
Zinc as 3b603 Zinc Oxide	5,500 mg	550 mg
Zinc as 3b612 Zinc Chelate of Protein Hydrolysates	1,500 mg	150 mg
Selenium as 3b801 Sodium Selenite	30 mg	3 mg
3b8.10 Organic Selenium (Selplex)	20 mg	2 mg

Protected trace elements: if you had high Iron (FE) Molybdenum (Mo) or Sulphur (S) the protected trace elements would

counteract that.

	ANALYSIS	
	Lo	w levels of
	ANALYTICAL CONSTITUENTS	acro minerals.
	MAGNESIUM	0.50%
	CALCIUM	10.00%
	PHOSPHOROUS	1.00%
	NUTRITIONAL ADDITIVES (PER KG)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	E4 CUPRIC SULPHATE PENTAHYDRATE E6 ZINC OXIDE	10,000 MG/KG
	ES MANGANOUS OXIDE	8,140 MG/KG 5,000 MG/KG
	E4 COPPER GLYCINATE (PROTECTED COPPER)	2,180 MG/KG
	CE GALCIUM IODATE ANHYODOUS	710 MG/KG
4	ALPA TOCOPHEROL	- 525 MG/KG
	E3 COBALTOUS CARBONATE MONOHYDRATE E8 SODIUM SELENITE	140 MG/KG 111 MG/KG
	VITAMIN A	250 000 IU/KG
	VITAN	50,000 IU/KG
		3
1		ALVER
		N N

- Mag and Phosphorous content much too low
- Vitamin D and E low also

APPROV TRACE ELL (COPPER 25%) (COPPER (PRO) (CANC 72%) (ZINC (PROTEC (SELENIUM 4.5%) (COBALT 5%) (COBALT 5%) (COBA	ECTED BIOPLEX) 12**) E4/ CUPRIC SULPHATE PENHYDRATE, 10000 mg kg TED BIOPLEX) 12**) E4/ CHELATE OF PROTEIN HYDROL YSATES, 4166mg **) E6/ ZINC OXIDE, 6250 mg/kg **) E6/ CHELATE OF PROTEIN HYDROL YSATES, 3333mg **) E8/ SODIUM SELNITE 1100 mg/kg ** COBALT CARBONATE MONOHYDRATE, 2000 mg/kg ** E5/ CALCIUM IODATE ANHYDROUS 800 mg/kg	UFAS No. 5128 (SUPPLYING 2500mg/kg) (SUPPLYING 500 mg/kg) (SUPPLYING 500 mg/kg) (SUPPLYING 500 mg/kg) (SUPPLYING 500 mg/kg) (SUPPLYING 100 mg/kg) (SUPPLYING 1860mg/kg)
COMPOSITO	TRACE ELEMENTS, IODISED SODIUM, MAGNESIUM SULPHATE, VITAM	INS.
BEST B	This is a very good mineral, just be careful when buying mine with seaweed or other "special ingredients" check the label a the table above, they can be masking poor mineral content.	E

Major Minerals			
Calcium %	0.5	0.5	
Phosphorus P%	3	1	First one high P, Mg but
Magnesium %	22	20	low Sodium, second
Sodium %	4.85	19	Phosphorous.
Trace Elements			
Copper mg/kg	3,500	3,500	
Copper Chelate mg/kg	500		
Copper Carbonate	750	1,000	
Cobalt mg/kg	100	100	
lodine mg/kg	500	500	Has protected Copper,
Zinc mg/kg	5,000	5,000	Zinc, and Selenium,
Chelate	1,000		excellent if you have
Manganese mg/kg	3,500	3,500	high Iron,
Selenium mg/kg	50	45	Molybdenum.
Sel-Plex	10.00		
Vitamins			
Vitamin A iu/kg	600,000	200000	
Vitamin D3 lu/kg	150,000	40,000	
Vitamin E lu/kg	8,000	500	Very high level of
Vitamin B12 mcg/kg	1,000	1,000	vitamins in the first
Vitamin B1 mg/kg	200	100	mineral, whereas the
Anionic Salts	30%		second has very low
Rumen Buffer			levels of vitamins A &
Biotin			D3.
Molasses Included (4%)	Yes	Yes	
Flavour Included	Yes	Yes	
Feeding Rage (g)	120	120	

Analytical Constituents			
Calcium	%	1	1
Magnesium**	%	30	25
Phosphorous	%	4	3
Sodium	%	3.8	10.8
Trace Elements			
Cobalt	mg/kg	100	100
Chelated Copper	mg/kg	2,500	2,000
Copper Total	mg/kg	3,000	3,000
lodine	mg/kg	500	500
Manganese Total	mg/kg	3,350	3,350
Organic Selenium*	mg/kg	20	10
Selenium Total	mg/kg	50	50
Chelated Zinc ***	mg/kg	2,500	750
Zinc Total	mg/kg	8,050	7,950
Vitamins			
Vitamin A	iu/kg	800,000	500,000
Vitamin D3	iu/kg	300,000	200,000
Vitamin E	mg/kg	10,000	5,000
Vit b12	mcg/kg	2,000	1,500
Nicotinic	mg/kg	4,000	
Vit B6	mg/kg	250	
Pantothenic	mg/kg	500	
Vit B1		500	250
Biotin	mg/kg	50	
Yeast		Yes	
Feeding Rate	g/cow/d	100 - 120	100-120

First one is very high in macro minerals, the second is more the level for a suckler cow, could be fed 80gms per day up to 2 weeks from calving and then up to 100g per day.

Has protected Copper, Zinc, and Selenium, excellent if you have high Iron, Molybdenum

Very high level of vitamins in the first mineral, whereas the second has a good level for suckler cows

How about mineral buckets?

The issue with buckets is getting the volume into the cow and the variability of intake. Also feeding buckets outside can attract badgers, they love the molasses in the buckets.

So how do you use your Silage Mineral Analysis?

		Interpretation of Guide Values				Analytica	al Result	
Analyte	Units	Very Low (VL)	Low (L)	Normal (N)	High (H)	Very High (VH)	VALUE	STATUS
Phosphorus	%	0.14	0.2	1 0.3	8 0.5	i8	0.25	N
Potassium	%	0.9	1.4	4 2.0	6 3.	8	1.56	N
Calcium	%	0.25	0.4	4 0.7	5 1.2	26	0.51	N
Magnesium	%	0.09	0.1	3 0.2	3 0.3	85	0.12	L.
Sodium	%	0.16	0.2	4 0.4	4 0.	7	0.34	N
Sulphur*	%	0.09	0.1	3 0.2	.5 0.4	4	0.17	N
Manganese	mg/kg	50	80	15	0 23	0	41	VL
Copper	mg/kg	4	6	10) 18	в	5.3	L.
Zinc	mg/kg	20	30) 56	5 85	5	18	VL
Iron*	mg/kg	150	22	0 48	0 70	0	59	VL
Molybdenum*	mg/kg	0.7	1.	3 2.4	4 3.0	6	0.9	L.
Selenium	µg/kg	50	75	5 15	0 25	0	44	VL
Iodine	µg/kg	100	15	0 30	0 45	0	158	N
Cobalt	µg/kg	50	10	0 20	0 30	0	29	VL

1. Normal for macro minerals and low in trace minerals. Feed a good quality dry cow for at least 60 days

* Elevated values are potential Copper Antagonists

		Interpretation of Guide Values					Analytica	al Result
Analyte	Units	Very Low (VL)	Low (L)	Normal (N)	High (H)	Very High (VH)	VALUE	STATUS
Phosphorus	%	0.14	0.2	1 0.3	8 0	.58	0.20	L.
Potassium	%	0.9	1.4	4 2.6	i 3	3.8	2.15	N
Calcium	%	0.2	5 0.4	ŧ 0.7	5 1	.26	0.33	L.
Magnesium	%	0.09	0.1	3 0.2	3 0	.35	0.12	L.
Sodium	%	0.16	5 0.2	4 0.4	4 0).7	0.08	VL
Sulphur*	%	0.09	0.1	3 0.2	5 0).4	0.14	N
Manganese	mg/kg	50	80	15	0 2	30	67	L.
Copper	mg/kg	4	6	10	. :	18	5.8	L.
Zinc	mg/kg	20	30	56	i 8	85	23	L.
Iron*	mg/kg	150	22	0 48	0 7	'00	1609	VH
Molybdenum*	mg/kg	0.7	1.3	3 2.4	н з	8.6	0.9	L.
Selenium	µg/kg	50	75	15	0 2	:50	31	VL
Iodine	µg/kg	100	15	0 30	0 4	50	245	N
Cobalt	µg/kg	50	10	0 20	о з	00	276	н

2. Low in P, a bit low in S, and high in iron. Review P application to silage ground for next year. Apply Sulphur to silage ground in 2023. Make sure that mineral has >2.5% P, and copper and zinc have protected sources

* Elevated values are potential Copper Antagonists

		Interpretation of Guide Values					Analytica	al Result
Analyte	Units	Very Low (VL)	Low (L)	Normal (N)	High (H)	Very High (VH)	VALUE	STATUS
Phosphorus	%	0.14	4 0.2	21 0.	38	0.58	0.26	N
Potassium	%	0.9	1.	4 2	.6	3.8	1.29	L.
Calcium	%	0.2	5 0.	4 0.	75	1.26	0.65	N
Magnesium	%	0.0	9 0.1	.3 0.	23	0.35	0.16	N
Sodium	%	0.10	5 0.2	24 0.	44	0.7	0.48	н
Sulphur*	%	0.0	9 0.1	.3 0.	25	0.4	0.14	N
Manganese	mg/kg	50	8	0 1	50	230	75	L.
Copper	mg/kg	4	6	1	0	18	5.0	L.
Zinc	mg/kg	20	3	0 5	6	85	21	L.
Iron*	mg/kg	150	22	0 4	80	700	226	N
Molybdenum*	mg/kg	0.7	1.	3 2	.4	3.6	1.4	N
Selenium	µg/kg	50	7	5 1	50	250	119	N
Iodine	µg/kg	100) 15	0 3	00	450	332	н
Cobalt	µg/kg	50	10	0 2	00	300	118	N

3. Quite normal profile.
Ensure good quality
sources of trace
minerals. K looks a bit
low. Review silage K
applications to ensure
yield not being limited
– K in autumn on silage
area if soil test confirms
low index

* Elevated values are potential Copper Antagonists

		Interpretation of Guide Values					Analytica	al Result	
Analyte	Units	Very Low (VL)	Low (L)	Normal (N)	High (H)	Very High (VH)	VALUE	STATUS	
Phosphorus	%	0.14	0.2	21 0.3	8 0	.58	0.31	N	
Potassium	%	0.9	1.	4 2.6	5 3	3.8	2.27	N	4. P and K
Calcium	%	0.25	i 0.	4 0.7	5 1	.26	0.74	N	look good,
Magnesium	%	0.09	0.1	.3 0.2	3 0	.35	0.15	N	sulphur on
Sodium	%	0.16	i 0.2	24 0.4	4 0).7	0.29	N	target, high
Sulphur*	%	0.09	0.1	.3 0.2	5 (0.4	0.21	N	iron, low zinc.
Manganese	mg/kg	50	80	0 15	0 2	230	92	N	Ensure a
Copper	mg/kg	4	6	10	. :	18	6.9	N	protected
Zinc	mg/kg	20	30	0 56	i 4	85	26	L	zinc and
Iron*	mg/kg	150	22	0 48	0 7	00	859	VH	copper source
Molybdenum*	mg/kg	0.7	1.	3 2.4	i 3	3.6	1.5	N	are included
Selenium	µg/kg	50	7	5 15	0 2	250	62	. L	
Iodine	µg/kg	100	15	0 30	0 4	150	588	VH	
Cobalt	µg/kg	50	10	0 20	о з	300	484	VH	

* Elevated values are potential Copper Antagonists

Watch for high levels of sulphur, we recommend to apply 1 unit of sulphur for every 10 units of nitrogen applied to a silage crop as sulphur helps to increase the protein content of the silage. However if the sulphur gets too high it too can lock up copper in the rumen.

Please note: Herds that have had problems in the past should test silage for minerals and their second round grazing swards.

Blood testing: If you want to test for a mineral status of a herd, ensure to test approx. 10 of the group. Do this a month before the critical time, so if you are starting to calve on the 10th of February, test on the 10th of January. If you want to start breeding on the 10th of May, blood your cows/heifers on the 10th of April. This will give you time to correct any issues.