

The ATU Contract Research Unit (CRU) as part of the Research Office provides a dedicated outreach Research & Innovation support to regional enterprises, communities and individuals.

Assessing the value of Solar PV for farms

Is Solar PV right for your farm?

Solar PV v Electricity Demand

- Solar PV generates electricity during sunlight hours, increasing from sunrise to a peak around midday and decreasing to sunset.
- ➤ A Solar PV system will generate approx. 5 times more electricity on a summer day (May/June), than on a winter day (Dec/Jan).
- ➤ The best return on investment for Solar PV is to use the generated electricity in your own home or business as it is being generated.

Is Solar PV right for your farm?

Solar PV v Electricity Demand

Farming sectors with daytime electricity demand

Sector	Potential electricity match for Solar PV	Notes
Pig & Poultry	 Internal daytime lighting Ventilation Feeding systems Heating pads 	 Continuous lighting Ventilation generally increases in the summer – very good match for Solar energy
Horticulture	Cooling/RefrigerationFood processing	 Cooling/refrigeration generally increases in the summer – very good match for Solar energy
Tillage	 Grain drying (fans and electric heat) 	 Seasonal operation Fans may be used mostly at night to utilise cheaper unit rates
Dairy	Milk coolingWater heatingMilking machines / pumps	 Peak demand is morning and evening – not a good match for Solar energy output Water heating can use night rate electricity Battery storage may be required to make Solar PV effective – increases system cost

Advisory Service – Solar PV

Target Sectors

- Daytime electricity use
- Pig, poultry, horticulture
- Group Water Schemes

Solar PV toolkit

- Guidance document
- Solar PV Toolkit
- Regulatory guidance
- Bills analysis
- Yield assessment
- Financial Analyses

Delivery

- Direct training on the Solar PV toolkit use
- Follow up support for market offers

Advisory Service – Solar PV + battery

Solar PV + Battery toolkit

- Guidance document
- Solar PV + Battery Toolkit
- Regulatory guidance
- Yield assessment
- Financial Analyses

Delivery

- Direct advisory service with individual/groups farmers
- On-site data logger daily demand profile
- Assessment and Specification provided to farmer
- Follow up support for market offers

<u>Direct monitored</u> data

SOLARGIS

€ Investment estimates

Advisory Service – Solar PV

Levelised Cost of Electricity

- Investment cost for the renewable electricity produced by the system €/kWh
- Calculated over a timeframe

Total system life investment cost (€)

LCOE over 20 years =

Total Solar PV generation over 20 years (kWh)

Case studies

Poultry – Free Range Eggs, Co. Cavan

Free range eggs and rearing

- Site: 30,000 layers and 25,000 bird rearing shed
- Electricity: 3-phase, MIC 27kVA, approx. 50,000 kWh/year
- Solar PV assessment:
 - ☐ Option 1: 20 kWp
 - ☐ Option 2: 30 kWp
- Analysis parameters/assumptions:
 - □ Cost of electricity €0.35/kWh
 - □ Export tariff €0.135/kWh (Clean Export Premium, 15 years)
 - Solar PV investment cost €1,600 to €1,800 per kWp installed
 - ☐ TAMS grant 60% of system cost

Poultry - Free Range Eggs, Co. Cavan

Analysis results

- 20kWp output C. 17,000 kWh/year (Self-consumption 85%, export 15%)
- 30kWp output C. 25,600 kWh/year (Self-consumption 60%, export 40%)

Poultry – Free Range Eggs, Co. Cavan

Analysis results 20kWp

- System cost €36,000
- TAMS grant 60%
- Initial investment €14,400
- Output C. 17,000 kWh/year
- Simple payback in Year 3
- o Value in year 10 = €42K
- o LCOE (20 years) = €0.07/kWh

Poultry – Free Range Eggs, Co. Cavan

Analysis results 30kWp

- System cost €50,000
- TAMS grant 60%
- o Initial investment €20,000
- Output C. 25,600 kWh/year
- Simple payback in Year 4
- o Value in year 10 = €50K
- o LCOE (20 years) = €0.06/kWh

Free range egg farm

- Site: 12,000 layers
- Electricity: Single-phase, MIC 16kVA, approx. 24,000 kWh/year
- Solar PV assessment:
 - ☐ Option 1: 16 kWp
 - ☐ Option 2: 20 kWp + 6kWh battery
- Analysis parameters/assumptions:
 - □ Cost of electricity €0.30/kWh
 - □ Export tariff €0.135/kWh (Clean Export Premium, 15 years)
 - Solar PV investment cost €1,600 to €1,800 per kWp installed
 - ☐ TAMS grant 60% of system cost

Free range egg farm

- Electricity monitor installed on-site
- > Good access to electricity meter cables
- > Internet router with available LAN port

Efergy Energy Hub (available for single and 3-phase)

Owl Intuition (available for single and 3-phase)

Free range egg farm

Metered data – shows general daily demand trend

A

Poultry – Free Range Eggs, Co. Sligo

Free range egg farm

Metered data – more accurate estimate of self-consumption and export

Free range egg farm

Metered data – allows battery value to be assessed

Analysis results 16kWp

- System cost €27,000
- TAMS grant 60%
- o Initial investment €10,800
- Output C. 12,800 kWh/year
- Simple payback in Year 4
- o Value in year 10 = €22K
- o LCOE (20 years) = €0.08/kWh

Poultry – Free Range Eggs, Co. Cavan

Analysis results 20kWp + 6kWh battery

- System cost €37,000
- TAMS grant 60%
- o Initial investment €14,800
- Output C. 16,000 kWh/year
- Simple payback in Year 4
- o Value in year 10 = €25K
- o LCOE (20 years) = €0.07/kWh

What to do next?

Solar PV project development

Preparation

- Collate at least 1 year of electricity bills
- Confirm MIC, single-phase or 3-phase

Solar PV toolkit training

- Guidance document
- Excel toolkit (must be familiar with Excel)

Electricity monitors

- Can be ordered online and self-installed (no electrician required)
- Must have access to meter cables and internet router with spare LAN port

Mel Gavin – ATU Sligo

Mel.gavin@atu.ie

086 3099184

Thank you

Microgeneration Support Scheme (MSS) & the Small-Scale Generation (SSG) support scheme

Policy support for Renewable Electricity

Support scheme for Small-Scale Generation 50kW to 6MW

Microgeneration
Up to 50kW

Small-Scale Generation 50kW to 500kW

Large Scale Generation
Over 0.5MW

Microgeneration Support Scheme (MSS):

- Installation grant up to 6kW
- Clean Export
 Guarantee (Domestic)
- Clean Export Premium (Non-Domestic)
- Improved regulatory routes: grid connection; planning

Support Scheme for Small-Scale Generation (SSG):

 Identified for action in Climate Action Plan 2021 Renewable Electricity Support Scheme (RESS):

- Auction based system for contract electricity price
- Exclusive Community project pot
- Community Enabling Framework

Microgeneration Support Scheme

Support design based on 'Viability Gap'

- Installation grant: For all projects up to 6kW. Max €2,400.
- □ Clean Export Guarantee (CEG): Paid by electricity supplier, linked to wholesale market price of electricity variable.
- □ Clean Export Premium (CEP): For non-domestic 6.1kW to 50kW. Paid by the MSS (managed by suppliers) scheme at a fixed tariff for 15 years. Export capped at 80% of capacity.

Public Consultation – design

Support design based on 'Viability Gap'

The Viability Gap is defined as the difference between lifetime costs and lifetime income (from savings and/or sale of electricity)

Public Consultation – design

Support design based on 'Viability Gap'

- □ Clean Export Guarantee (CEG): Paid by electricity supplier, linked to wholesale market price of electricity variable
- □ Power Purchase Agreement (PPA): Contract for sale of electricity with licensed electricity supplier
- □ Feed in Premium (FiP): Paid by the SSG scheme to make up the Viability Gap