Water Heating Options for Dairy Farms

Dr. John Upton Milk Quality Symposium 2019

Content of presentation

- 1. Energy requirements of water heating
- 2. Providing sufficient quantities of hot water
- 3. How to be cost efficient
- 4. How to be environmentally efficient

Dairy Farm Energy Consumption

Figure 1. Shows the average component consumption on 60 commercial dairy farms

Cost of electricity = €5.00 per tonne of milk sold

National dairy usage in 2018 was ~ 312 GWh 180,000 T CO₂

Water Heating Requirements

•Ensure adequate supply at the correct temperature

- 10 Litres of hot water required per cluster for machine washing Generally at 80 degrees C, check cleaning product advice
- Allow for heating 2% of bulk tank volume for tank washing Generally at 70 degrees C, check cleaning product advice
- E.g. 16 unit parlour requires 160 L hot water per wash
- 8,000 L bulk tank requires 160 L hot water per wash
- 320 L required if washing both on the same day

Dairy farm infrastructure workbook

Dairy Farm Infrastructure Workbook

Moorepark'19 Irish Dairying - Growing Sustainably Wednesday 3rd July, 2019

Introduction	6
Grazing infrastructure	7
Paddock size and layout	
Farm roadways	
Fencing	
Water system	.24
Case study farm example	31
Milking practices and energy use	
Milking efficiency	
Milking facilities worksheet	41
Energy efficiency	46
Electricity usage survey	
Electricity usage survey Energy audit worksheet	48 49

https://www.teagasc.ie/media/website/publications/2019/Dairy-Farm-Infrastructure-Workbook.pdf

Electrical water heating

- Low capital cost (approx €1,500 for a system of 500 L capacity)
- Best blend of capital and running costs up to 300 L per day
- Restricted by night rate electricity to keep running costs low
- Long heating times, approx 8 hours to heat 300 L from 10 to 80 degrees with 3 kW element
- Higher emissions 6 kg CO₂ per 100 L

Water Tanks

Night Rate Electricity

- Day rate = €0.18 / kWh
- Night Rate = €0.085 / kWh
- Free installation, small standing charge
- Use timers with battery back up
- Night rate from 12 midnight to 9am summer
 - 11 pm to 8am winter time

Oil fired water heating

- Not restricted by night rate electricity
- Available either tanked or instant
- Ensure system can deliver required volume quickly
- Higher capital cost (approx €3,500 for a 500 L hot water capacity)
- Reduced heating times, 1.5 hours to

heat 500 L from 10 to 80 degrees

• Lower emissions – 3 kg CO₂ per 100 L

LPG fired water heating

- Not restricted by night rate electricity
- Higher capital cost
- Typically installed as instant heaters
- Ensure system can deliver required volume quickly
- Lower emissions 2.4 kg CO₂ per 100 L

Water Heating Running Costs

System type	Cost per 100 Litres
Day rate electricity	€2.10
Night rate electricity	€0.94
Gas fired system	€0.91
Oil fired system	€0.72

•Oil and gas systems worth considering from a financial point of view where daily use exceeds 300 L of hot water per day

•Convenience also affects decision making around system choice

Simple efficiency measures

- Test water for hardness install a water softner for heating system if result is over 300 mg/L calcium carbonate
- Use best quality insulation
- Time system to reduce standing losses
- Service gas and oil systems annually

Options to increase efficiency - Heat Recovery

- Heat energy is removed from milk during cooling
- Energy transferred to a tank of water
- Retrofitting is possible

- HR can meet 30-50% of water heating load
- Payback varies depending on parlour size, hot wash frequency and bulk tank size
- Check payback on case by case basis
- TAMS grant available

Solar Photovoltaic (PV)

- Generates renewable electricity from the sun
- TAMS grant for 6 kWp system
- Saves ~ 3 tonnes CO₂ per year
- System cost ~ €7,500
- Qualifies for accelerated capital allowances
- Water heater can be uses for storage of excess electricity

Decision support for energy efficiency projects

Solar Photovoltaic Example

Dairy Energy Decision Support Tool

Solar Photovoltaic Example 40% grant

Dairy Energy Decision Support Tool

 Calculate volumes required – ensure that water heating system can deliver the quantities required rapidly

 Chose an efficient system with low running costs and low CO₂ emissions

 Use dairy energy decision support tool to help with decision making

Solar Thermal

Solar Thermal

- Solar thermal system can meet on average 40% of water heating load
- The solar tank should be used as a buffer tank only. A second tank to heat the water to 80 degrees is required
- The solar tank should pre feed the final temperature water tank
- No grant support for solar thermal, paybacks of 10 years

Irish milk production energy requirements

- Electricity consumed = 42 kWh/tonne milk produced (Upton et al., 2013)
- 7.3 billion Litres of milk produced in 2017 (CSO 2018)
- Total electricity required in 2017 was ~ 312 GWh
- Projected that by 2020 Ireland will produce up to 8.8 billion litres; this will require ~ 378 GWh of electricity
- Electricity related CO₂ emissions may be 182,000 tonnes by 2020 unless mitigation strategies are implemented

