Unlock the true potential from your silage next winter

Silage Quality 2020

Why do you need better quality silage?

High DMD silage (75% DMD), that is a leafy silage sward prior to mowing, can add value to your stock on a lower feed cost as highlighted in the table below.

Silage Quality	Good 72% DMD	Average 68% DMD	Poor 62% DMD	Very Poor 55% DMD
Concentrate required (kg/hd/day)	1.0	2.0	3.0	4.5
Concentrate required (kg/hd/day) 100 weanlings 140 day winter	14 Ton	28 Ton	42 Ton	63 Ton
Conc. Costs over winter	€3,500	€7,000	€10,500	€15,750
Liveweight gain (kg/140 day winter) (silage only)	102	78	49	15

Delaying your cutting date costs approximately €500/day!

How can you achieve this?

To improve quality you need to harvest the crop at a younger (leafy) stage.

A good fertiliser programme will allow <u>you to decide</u> your silage DMD.

Based on your soil results you can work out your requirements below.

Units /acre:

Soil Index	N	Р	k	0-7-30	Urea (46%)	CAN (27%)
Index 1	100	32	140	4.5	2.25	3.75
Index 2	100	24	124	3.5	2.25	3.75
Index 3	100	16	100	2.25	2.25	3.75

Kg/ha:

Soil Index	N	Р	K	0-7-30	Urea (46%)	CAN (27%)
Index 1	125	40	175	550	280	460
Index 2	125	30	155	430	280	460
Index 3	125	20	125	280	280	460

<u>Is your fertiliser plan adequate?</u>

	Requirements from	n above (N, P, K)	N	Р	K
Step A	E.g. Index 2 (Units/	100	24	124	
	Fertiliser Type	Quantity Applied			
	E.g. 24-2.5-10	3 Bags/acre	72	7.5	30
Step B					
Step C	Total Appli				
Step D	Deficit left to b				
	E.g. Deficit from	28	16.5	94	

^{*}Slurry can be a very variable product and should not be overvalued. 2000 gallons of slurry is approximately = 1.5 bag of 0-7-30

Address this deficit to achieve the true potential from your silage:

Higher weight gain at low costs next winter

Joe Hand, Louise Pierce, 2019.