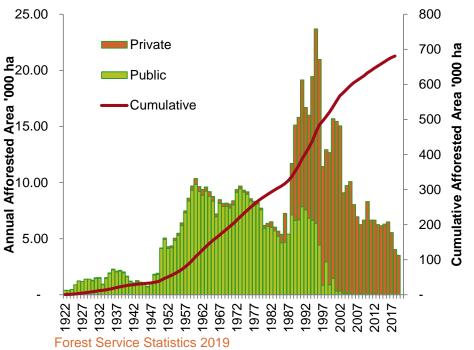


Land Use Change and Forestry: Economic and Environmental Interactions

Mary Ryan

Ag Economics & Farm Surveys Department Rural Economy Development Programme Jan 20 2021



Context

- Largest land use change since the foundation of the State – major achievement
 - 1.5% (1920) → 11% (2020) of land area
- Challenges:
 - planting target: 18%
 - multiple small-holders: >20,000
- Research:
 - how / where benefits of forests can
 be realised
 High-level summary

(details of projects, references and team on last slide)

State Planting programmes: Annual Planting

TEAGASC RESEARCH INSIGHTS LEADING RESEARCH FOR TOMORROW'S AGRI-FOOD SY:

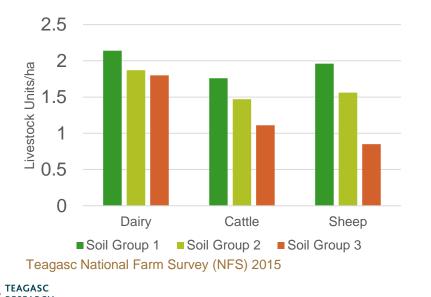
Environmental drivers

Environmental inputs/**natural capital** impacts agricultural and forest productivity

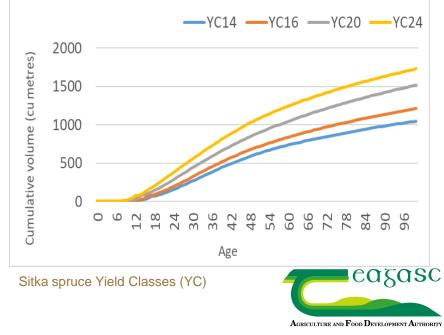
(soils, geology, altitude, slope, rainfall)

Agriculture and forestry also impact on the environment and ecosystem services

(water quality, gaseous emissions, carbon sequestration, biodiversity, recreation)



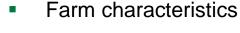
Environment: impact of soil/site type



Higher livestock density on better soils

Higher timber yield on better site type

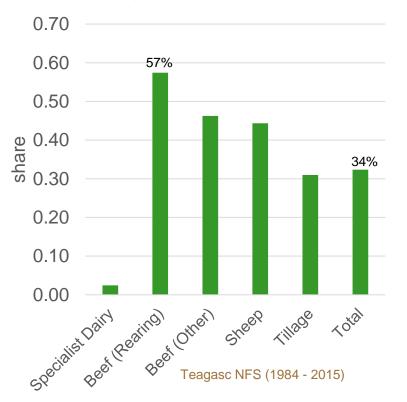
Economic driver: opportunity cost of planting


Weigh up profitability of ag v. forestry

- Forest characteristics
- Market Income
- Subsidies
- Costs
- Tax-free

Annual income v Forest rotation Life-cycle approach

- Market income
- Subsidies
- Costs
- Tax

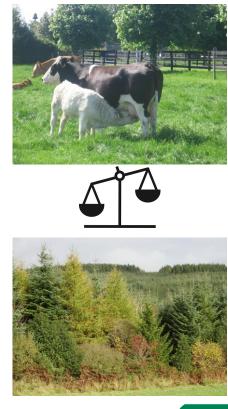

Relative profitability - agriculture and forestry

Agriculture is more profitable than forestry on majority of farms (66%)

Forestry is more profitable on

- 57% of cattle rearing farms
- approx half cattle finishing and sheep farms
- very few dairy farms

Share of farms by system where forestry is more profitable than agriculture



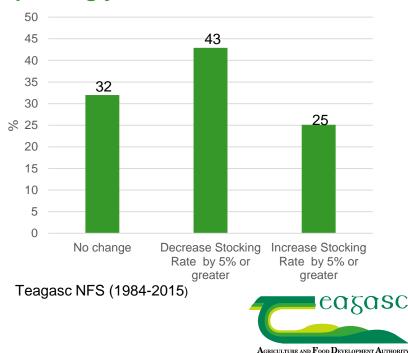
Behavioural drivers:

- Positive
 - Environmental gains
 - Good use for marginal land
 - Lower working hours
- Negative
 - Culture and attitude really important → 84% don't intend to plant
 - Prefer farming
 - Prefer money now
 - Permanent change → loss of land flexibility

Saturation of forestry in some areas

Changes on farms after planting

Different farmers have different objectives

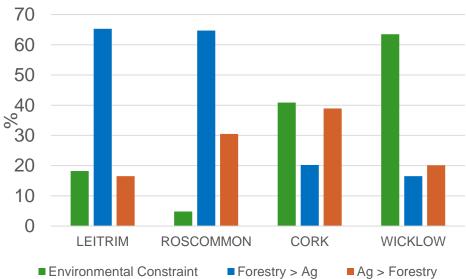

No change in SR: largest, most intensive - optimising land

Decrease SR: high stocking rate (preplanting), older - optimising income/retire

Increase SR: younger, off-farm income - optimising time

Afforestation decision is not made in isolation Part of other farming choices

Change in farm stocking rate (SR) in planting year

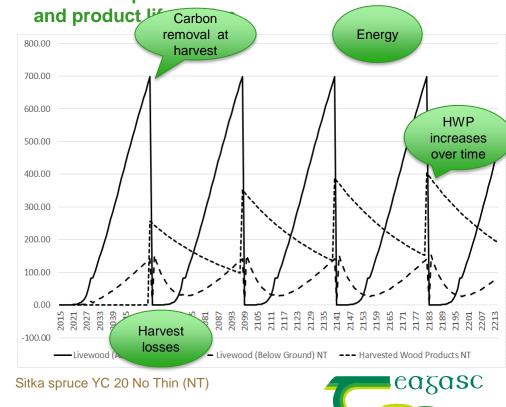


Spatial drivers: impact of location

- High environmental constraints
 - Wicklow and Cork
- Large share of farms higher income from forestry
 - Leitrim and Roscommon
- Large share of farms higher income from agriculture
 - Cork

Both environmental constraints and relative returns differ across the country

Shares of farms

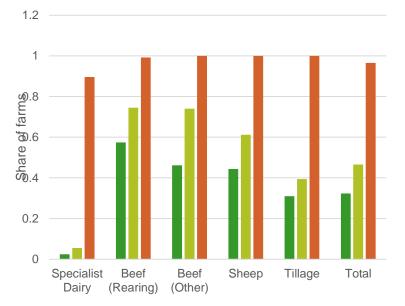


Environmental Impact: carbon sequestration

- Main carbon pools
 - Livewood
 - Harvested Wood Products (HWP)
 - Soil Carbon
- Greater losses for thin v no thin
- Wood and carbon objectives not necessarily complementary
 - may require different management regimes

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Carbon sequestration and carbon loss over forest



Environmental Impact: carbon value

- Private return: (market + subsidy only €0 carbon value)
- Social return: (market + government carbon values)
 - €32 per t*CO*₂eq (2020)
 - €100 (2030)

Accounting for carbon value greatly increases share of farms with higher forest income

Share of farms with higher forest incomes at different carbon values

■€0 carbon value ■€32 carbon value ■€100 carbon value Public Spending Code 2019 Carbon values

Forest Ecosystem Services (ES)

Water quality

- forest planting/harvesting (disturbances) negative impact
- Increasing forest cover neutral/small positive impact due to less disturbance & lower nutrient loads than agriculture
- Biodiversity value
 - high citizen willingness to pay (WTP) for mixed forests
- Recreation/Landscape
 - growing demand for forest recreation & landscape tourism
 - preference for broadleaf over conifer forest
- Rural Development
 - wood products highest economic multiplier (industrial)

Different forests deliver different Ecosystem Services

Planting Incentives

Benefits and Taxation

- Farm Assist improves farm income but eligibility for farming incentives is limited
- Strong tax incentives but not relevant for many farms

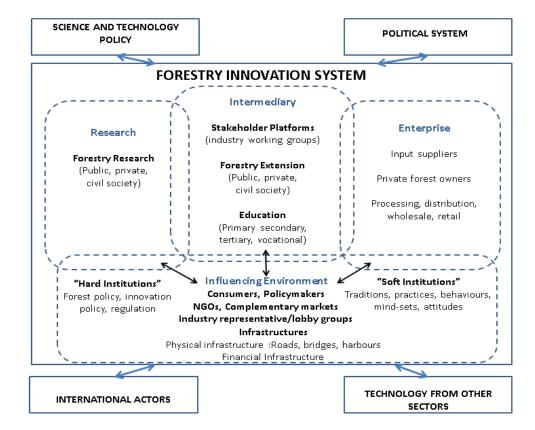
Knowledge Transfer/Extension

- "Extension service providers can have a positive impact on forest management outcomes and timber production goals."
- Developing competency in evaluation of extension activities

Wood mobilisation challenges

System needs to adapt to multiple smallholders

Innovation Systems approach


- involving all actors examining interactions
- collaborative solutions

Changing behaviour of forest owners requires

 changes in behaviour of those who create incentives or policy

Importance of examining the entire system

Innovation system map

Take home messages

The research shows...

- favourable returns from forests for particular landowners in particular areas (+ carbon)
- environmental gains from forests are complementary with agricultural targets
- interactions between economic, environmental and behaviour

To realise the benefits...

- systems perspective
- focus on behaviour
- different forests for different purposes

Complex Problems...

more research required

Go raibh maith agaibh

Team effort

Cathal O'Donoghue, Stephen Hynes, Henry Phillips, Vincent Upton, Kevin Kilcline

Áine Ní Dhubháin, Kevin Heanue, Niall Farrelly, Nuala Ní Fhlatharta

James Breen, Peter Howley, Colm Duffy, Cathal Geoghegan, Paula Cullen

Acknowledgements

Teagasc National Farm Survey

Teagasc Forestry Development Department

Research Projects - Funders

- FIRMEC COFORD
- ECOVALUE COFORD
- Economics PhD Teagasc
- Forest Extension Teagasc
- BioSciences PhD NUIG
- FOROWN DAFM-COFORD
- Sequester EPA
- Bio-Circle SEAI
- Forest Recreation DAFM-COFORD

Research programme publications

- Bullock, C., O'Callaghan, C., Ní Dhúbháin, A., Iwata, Y., O'Donoghue, C., Ryan, M, Upton, V., Byrne, K. A., Irwin, S., O'Halloran, J. and Kelly-Quinn, M. 2016. A review of the range and value of ecosystem services from Irish forests. Irish Forestry Vol. 73, pp 65-95 ISSN 0021-1192
- Breen, J, Clancy, D., Ryan, M and Wallace, Michael. 2010. Irish Land Use Change and the decision to afforest: An Economic Analysis. Irish Forestry. Vol 67 pp 6-20 ISSN 0021-1192
- Duffy, C., O'Donoghue, C., Ryan, M., Styles, D., Spillane, C. 2020. Afforestation: Replacing Livestock Emissions with Carbon Sequestration. Journal of Environmental Management. 264.
- Howley, P., Hynes, O'Donoghue, C., Farrelly, N. and Ryan, M. 2012. Farm and farmer characteristics affecting the decision to plant forests in Ireland. Irish Forestry Vol. 68: Nos. 1&2, pp 33-43
- Howley, P., Ryan, M and O'Donoghue, C. 2012. Forestry in Ireland: an examination of individual's preferences and attitudes towards the non-market benefits of forests. Irish Geography. pp 1-12
- Howley, P., Buckley, C., O'Donoghue, C. and Ryan, M. 2015. Explaining the apparent 'irrationality' of farmers' land use behaviour: The role of productivist attitudes and non-pecuniary benefits. Ecological Economics Vol. 109, pp 186-193 ISSN 0921-8009
- Kilcline, K., Ní Dhubháin, Á., Ryan, M., Heanue, K., O'Donoghue, C. 2021. Addressing the challenge of wood mobilisation through an innovation systems lens. Forest Policy and Economics. In press.
- McDonagh, J., Farrell, M. and Ryan, M 2011) Missed opportunity or cautionary steps? European Countryside ISSN 1803-8417
- O'Donoghue, C., Ryan, M. Incorporating Social and Private Returns to Forestry Planting Decisions. International Journal of Microsimulation. Under revise and resubmit.
- O'Donoghue, C., Ryan, M., Styles, D., Lanigan, G., Duffy, C., Kilcline, K. Distributional Analysis of the Social and Private Return to Afforestation, Accounting for the Cost of Carbon. Submitted to Land Use Policy.
- O'Donoghue, C. Kilcline, K., Farrelly, N, Ryan M. Economics and Environmental Constraints: The Spatial Challenge of Forestry Land Use Change. Paper in prep
- Ryan, M, McCormack, M., O'Donoghue, C. and Upton, V. 2014. The role of subsidy payments in the uptake of forestry by the typical cattle farmer in Ireland from 1984 to 2012. Irish Forestry
- Ryan, M. and O'Donoghue, C. 2016. Socio-economic drivers of farm afforestation decision-making. Irish Forestry Vol 73, pp 96-121 ISSN 0021-1192 35445
- Ryan, M., O'Donoghue, C. and Phillips, H. 2016. Modelling financially optimal afforestation and forest management scenarios using a bio-economic model. Open Journal of Forestry 6 (19-38).
- Ryan, M., O'Donoghue, C., Kinsella, A. 2017. The potential impact of differential taxation and social protection measures on farm afforestation decisions. Irish Forestry. 74 (1&2)
- Ryan, M., O'Donoghue, C., Hynes, S. 2018. Heterogeneous economic and behavioural drivers of the farm afforestation decision. Journal of Forest Economics 33. 63-74
- Ryan, M. and O'Donoghue C. 2019. Developing a microsimulation model for farm forestry planting decisions. International Journal of Microsimulation 12 (2)
- Upton, V., Ryan, M, Farrelly, N. and O'Donoghue, C. 2013. The potential economic returns of converting agricultural land to forestry: An analysis of system and soil effect from 1995 to 2009. Irish Forestry Vol. 70 - 14 pages ISSN 0021-1192
- Upton, V., O'Donoghue, C. and Ryan, M. 2014. The Physical, Economic and Policy Drivers of Land Conversion to Forestry in Ireland. Journal of Environmental Management 132 pp 79-86.
- Upton, V., Ryan, M, O'Donoghue, C. and Ní. Dhubháin, Á. 2015. Combining conventional and volunteered geographic information to identify and model forest recreational resources. Applied Geography Vol. 60, June, pp 69-76 ISSN 0143-6228
- Upton, V., Ryan, M., Heanue, K., Ní Dhubháin, Á. 2019. The role of extension and forest characteristics in understanding the management decisions. For Policy and Economics. 99 77-82.