Chlorates

Dr Simon Lawrence Department of Chemistry University College Cork simon.lawrence@ucc.ie

<u>Nomenclature</u>

ClO₂ chlorine dioxide

<u>Oxyanion</u>		Corresponding acid	
CIO ₄ -	perchlorate	HClO ₄	perchloric acid
CIO ₃ -	chlorate	HCIO ₃	chloric acid
CIO ₂ -	chlorite	HCIO ₂	chlorous acid
CIO-	hypochlorite	HCIO	hypochlorous acid

Cl⁻ chloride HCl hydrochloric acid

Generation of Chlorine Dioxide

Originally: Sir Humphrey Davy (early 1800s) potassium chlorate with sulfuric acid

Nowadays, small scale: reaction of sodium chlorite and chlorine

- 1 Using chlorine directly $Cl_2 + 2NaClO_2 \rightarrow 2ClO_2 + 2NaCl$
- 2 Chlorine generated *in situ* HCl + NaOCl + 2NaClO₂ \rightarrow 2ClO₂ + 2NaCl + NaOH

Note: Chlorine dioxide is highly reactive, liable to explode as shock sensitive, so usually generated *in situ*.

 $ClO_4^- = perchlorate, ClO_3^- = chlorate, ClO_2^- = chlorite, ClO^- = hypochlorite, Cl^- = chloride$

Chlorine Dioxide in water

Aqueous solutions (low concentrations) are stable in the dark. However, in light slowly decompose to hydrochloric acid (HCl) and chloric acid $(HClO_3)$.

 $CIO_2 + H_2O \rightarrow HCI + HCIO_3$

Basic solutions undergo a <u>rapid</u> reaction to give chlorite and chlorate.

 $2ClO_2 + 2OH^- \rightarrow ClO_2^- + ClO_3^- + H_2O$

Acidic solutions are more stable. Evidence it decomposes to chlorous acid $(HClO_2)$ first, followed by formation of hydrochloric acid and chloric acid.

 $CIO_4^- = perchlorate, CIO_3^- = chlorate, CIO_2^- = chlorite, CIO^- = hypochlorite, CI^- = chloride$

Possible other sources of chlorate

Chlorine initially dissolves in water: $Cl_2(g) \rightarrow Cl_2(aq)$

Then reacts, to form hypochlorous acid: $Cl_2(aq) + H_2O \rightarrow HCl + HOCl$

In *basic solution*: $Cl_2 + 2OH^- \rightarrow Cl^- + ClO^- + H_2O$ Equation 1

The hypochlorous anion rapidly disproportionates (simultaneous oxidation and reduction):

 $3ClO^{-} \rightarrow 2Cl^{-} + ClO_{3}^{-}$ Equation 2

At, or below, room temperature, Equation 1 most likely.

As temperature increases, Equation 2 becomes more likely.

 CIO_4^- = perchlorate, CIO_3^- = chlorate, CIO_2^- = chlorite, CIO^- = hypochlorite, CI^- = chloride