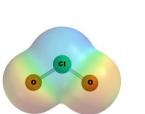
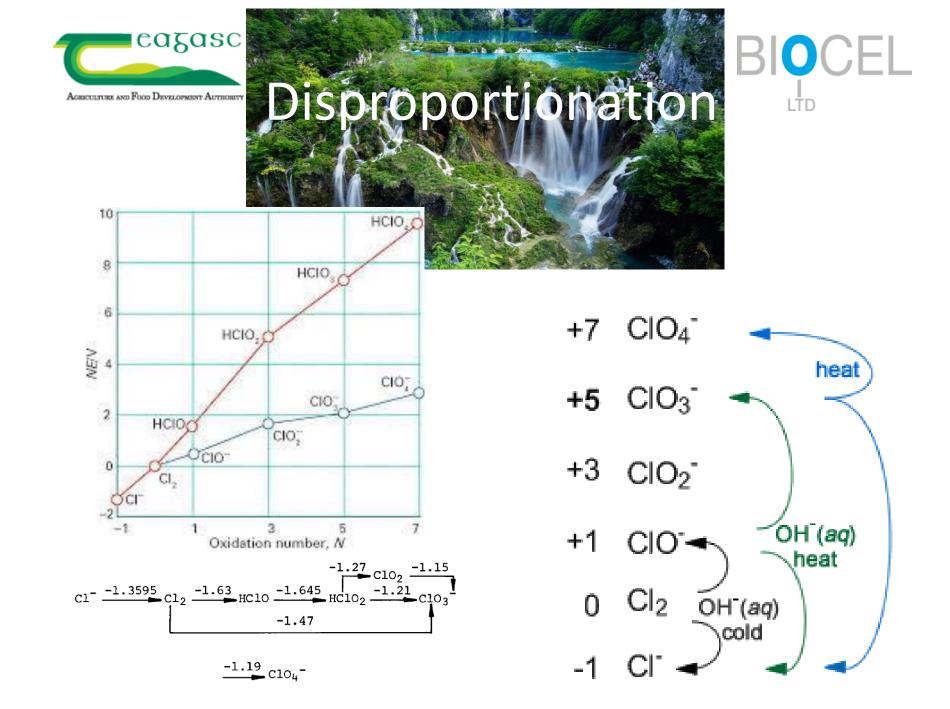


Chlorates? Karl McCarthy **Biocel Ltd.** Teagasc February 2016

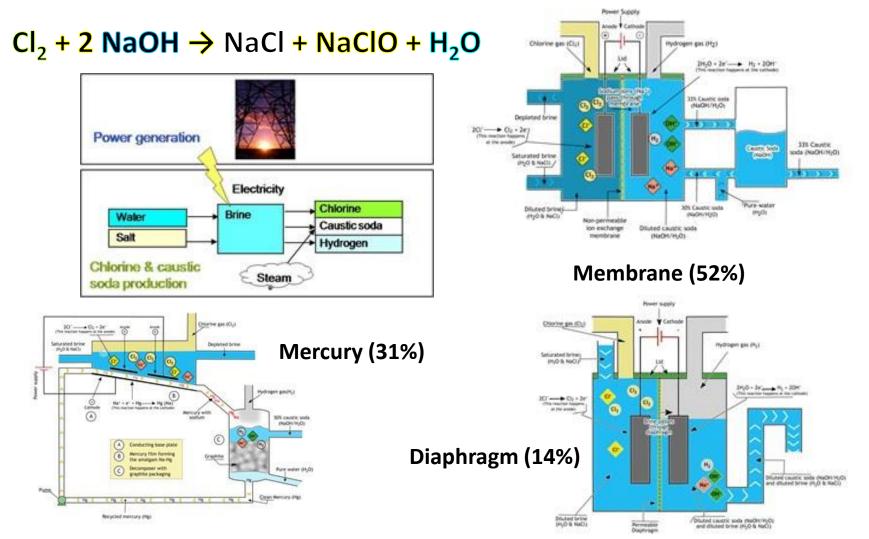


- Chemistry of Oxychloro anions
- Chloralkali industry
- Hypochlorite

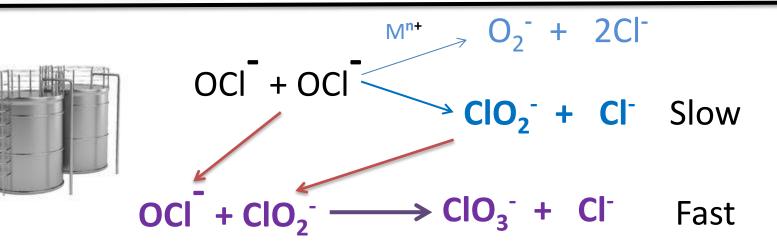
- Recommendations
- Chlorine Dioxide Chemistry
- Removal Options



BIOCEL



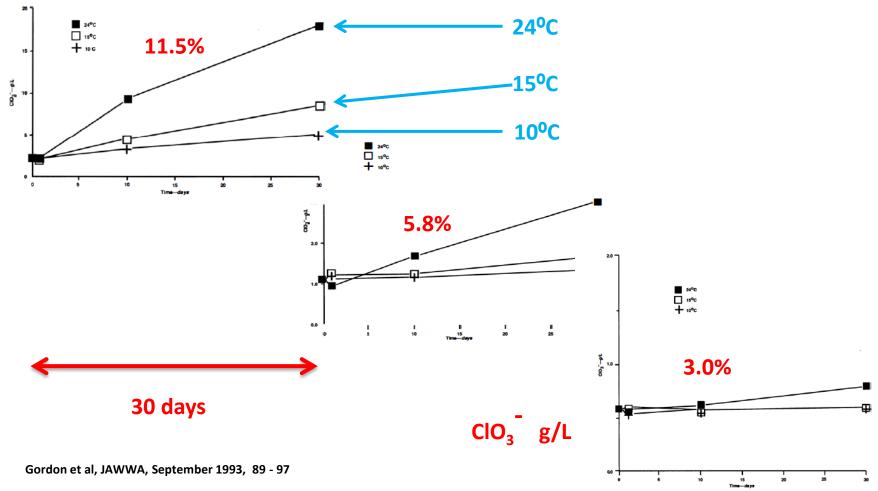
Chloroalkali Industry

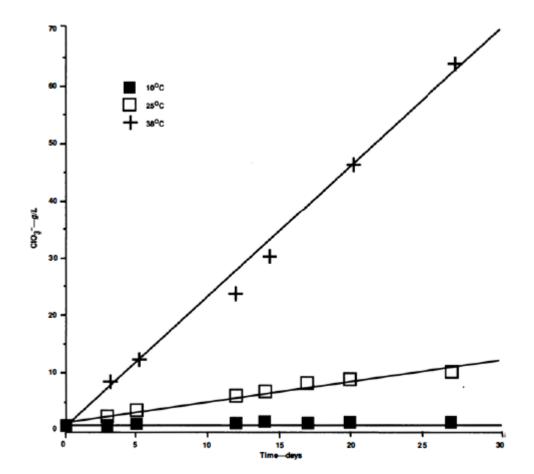


Decomposition Reactions

Two decomposition pathways in competition, one to form chlorate the other to form oxygen.

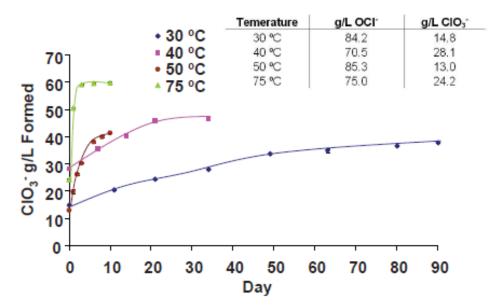
(i) 2HClO + ClO⁻ \rightarrow Cl⁻ + ClO₃⁻ + H⁺


(ii) $6ClO^{-} + 3H_2O \rightarrow 4Cl^{-} + 6H^{+} + \frac{3}{2}O_2 + \frac{2}{2}ClO_3^{-}$


Chlorate Formation v Temperature wrt Initial Hypochlorite Conc.

Dilution

Diluting the hypochlorite solution by a factor of 2 is more effective than decreasing the temperature from 24°C to 10°C.


Gordon et al, JAWWA, September 1993, 89 - 97

$\begin{array}{l} \mathsf{BIOCEL}\\ \mathsf{Decomposition of OCI}^{-} \& \text{ formation of CIO}_{3}^{-}\\ \mathsf{Influence of Temp }^{0}\mathsf{C} \end{array}$

(i) $Cl_2 + OH^- \rightarrow Cl^- + ClO^- + H^+$ (ii) $2HClO + ClO^- \rightarrow Cl^- + ClO_3^- + H^+$

(iii) $6ClO^{-} + 3H_2O \rightarrow 4Cl^{-} + 6H^{+} + \frac{3}{2}O_2 + 2ClO_3^{-}$

Hypochlorite – An Assessment of factors that influence the formation of Perchlorate and other Organic Contaminants ; AWWA/WRF , 2009

Recommendations

- Dilute OCl⁻ upon delivery.
 - High ionic strength produces CIO_3^{-1}
 - Dilution by f x 2 results in 5-fold decrease in decomposition.
- Store at low temperature.
 - Every 5°C reduction in storage yields reduction by factor of 2.
- Control pH.
 - Minimized at pH 11.86 to 13.00.
 - pH14, OH- increases by f x 1.5
- Control transition metals.
 - Ni (factor of 10), Co, Cu, (less so Fe & Mn)
- Use fresh.

ClO₂ Generation

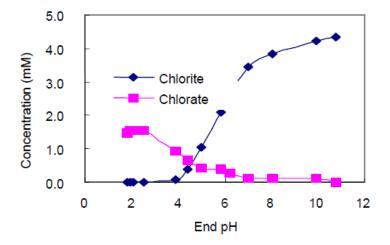
Reacts by 1 e⁻ oxidative pathway, Low THMs, 0.1 – 2.0 ppm

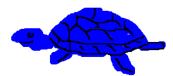
2NaClO ₂ +	Cl _{2(g)} =	= 2ClO _{2(g)} + 2NaCl
2NaClO ₂ +	HOCI	= 2ClO _{2(g)} + NaCl + NaOH
5NaClO ₂ +	4HCl=	$= 4ClO_{2(g)} + 5NaCl + 2H_2O$

Generator Type	Reactants	Products
Acid- Chlorite	4HCl + 5NaClO ₂	$4ClO_2 + ClO_3$
Aq. Chlorine Chlorite	$Cl_2 + H_2O + NaClO_2$	$CIO_2 + HOCI + NaOH + CIO_3^{-1}$
French Loop	2HOCI + 2NaClO ₂	$2CIO_2 + CI_2 + NaOH$
Gas. Chlorine-Chlorite	Cl ₂ + NaClO _{2(I)}	CIO ₂
Gas. Chlorine- Chlorite(s)	Cl ₂ + NaClO _{2(I)}	ClO ₂ + NaCl
Electrochemical	NaClO ₂	ClO2 + e-
Acid/Perox/Chloride	$2NaClO_3 + H_2O_2 + H_2SO_4$	$2CIO_2 + O_2 + NaSO_4 + H_2O$

$Cl_{2} + ClO_{2}^{-} = \{Cl - ClO_{2}\} + Cl^{-}$

In generators that operate at low initial reactant concentrations, a significant amount of chlorate is formed by reactants with $\{Cl_2O_2\}$.


At low reactant concentrations or excess HOCI


 $\{Cl_2O_2\} + H_2O = ClO_3^- = Cl^- + 2H^+$ $\{Cl_2O_2\} + HOCl = ClO_3^- + Cl^- + H^+$ $\{Cl_2O_2\} + 3HOCl + H_2O = 2ClO_3^- + 5H^+ + 3Cl^-$

Influence of pH

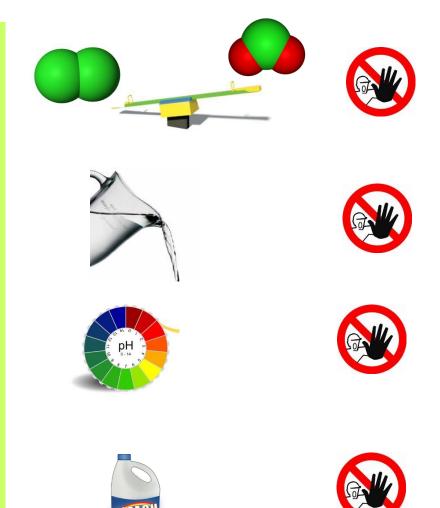
- High pH slows the formation of ClO₂
- Generates less efficient chlorate forming reactions.

At low pH: Chlorous acid (not chlorite) is oxidized to CIO_2 .

$2HCIO_2 + HOCI = HCI + H_2O + 2CIO_2$

However highly acidic (<pH 3) reaction mixtures force the degradation of $\{Cl_2O_2\}$ to chlorate rather than chlorine dioxide, as well as oxidation of chlorite to chlorate.

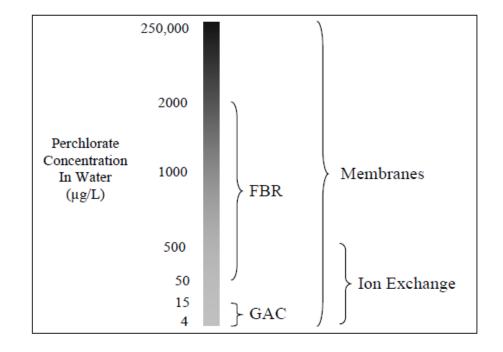
 $ClO_{2}^{-} + HOCl = ClO_{3}^{-} + Cl^{-} + H^{+}$ And $ClO_{2}^{-} + Cl_{2}^{-} + H_{2}O = ClO_{3}^{-} + 2 Cl^{-} + H^{+}$



Avoid

The following conditions may also produce the chlorate ion.

- Excessively high ratios of Cl₂ gas : ClO₂-
- Presence of high conc. of free chlorine at low pH in aq. Soln.
- Dilute chlorite soln. at low pH
- Base catalysed disproportionation of ClO₂ at high pH (pH > 11).
- Reaction mixtures that are highly acidic (pH < 3).
- An excess of HOCI will oxidize ClO₂⁻ to ClO₃⁻ rather than ClO₂, independently of {Cl₂O₂} intermediate.



Treatment Technologies

(Mostly developed for Perchlorate in USA)

- Ozone
- Reduction, Mⁿ⁺, e⁻
- Sulphur Dioxide
 - SO₂ / SO₃²⁻
- Activated Carbon
 - (GAC/BAC)
- Ion Exchange
 - Interferences from NO $^{3-}$ & SO₄
- Membrane
 - PolyElectrolyteUF, Colloid EnhancedUF, UF, NF, ED
- Reject streams??

- "There is not a standardised treatment process for removal of chlorate once formed."
- Control of ClO₃⁻ formation preferable.
 - AWWA, 2014

