
Chlorates Presentation (Based on Industry Data)

Effect of Dairy Processing Unit Operations

Teagasc Food Research Centre, Moorepark

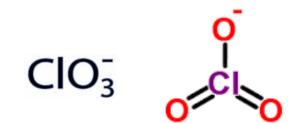
Overview

- Chlorate Levels (ppb) Reported in the Irish Dairy Processing Industry
- 2. Industry Data from Water Supply's (including Process water)
- 3. Impact of Process Unit Operations on Chlorate Levels
 - 1. Review of the data from Irish Dairy processing plants
 - 2. Gaps in the Knowledge
- 4. Summary / Key Points / Questions

1. Levels Chlorate (ppb) Reported in the Industry

Range of Chlorate levels found in different products

Milk: <10 – 60 (variability high) Skim (powder): 70 – 800 ppb WPC35: 200 – 800 ppb Lactose: <20 ppb Curd washing can increase Chlorate content

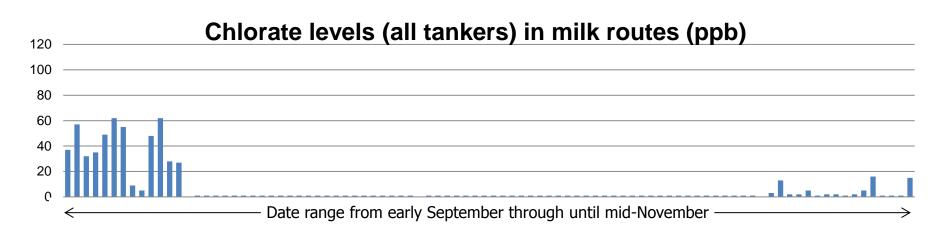

Typical Specification as set by IMF company's

50 ppb in skim milk powder 50 ppb in whey powders

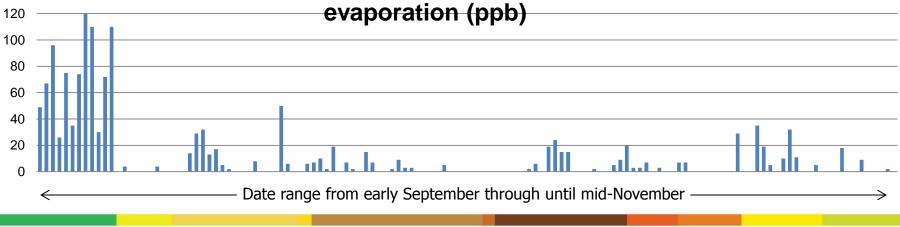
<20 ppb in lactose

2. Industry Data from Water Supply Sources <u>Dairy Processor 1</u>

	MAINS WATE	R		
Sample	Date	Chlorate mg/I	РРВ	
Mains Water	10/04/2015	0.169	169	
Mains Water	08/06/2015	0.246 246		
Mains Water	25/09/2015	0.084 84		
Mains Water	14/10/2015	0.15 150		
Mains Water	24/11/2015	0.17 170		
Mains Water	13/01/2016	0.071	71	
Mains Water	13/01/2016	0.059	59	
Mains Water	14/01/2016	0.074	74	
Mains Water	26/01/2016	0.1	100	
		AVERAGE	125	
M	UNICIPAL WATER	SUPPLIES		
Sample		Chlorate mg/l	PPB	
Town	CIO2	0.135	135	
Town	Chlorine Gas	<0.01	<10	
Town	Chlorine Gas	<0.01	<10	
H'	YPOCHLORITE SOL	UTIONS		
Sample		Chlorate mg/l	PPB	
Activox 50		533 533,00		
5% Hypochlorite		1080 1,080,000		
Bulk Chlorus Tank		97900	97,900,000	


Significant reduction in chlorate levels by optimisation of chloride dioxide system (levels still between 20 – 200 ppb)

Well water negative for chlorates prior to treatment

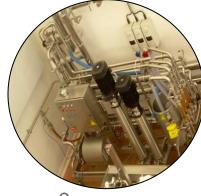

Following treatment with sodium hypochlorite chlorate - levels were high

3. Impact of Process Operations on Chlorate Levels

Chlorate levels in Skim (10% solids) balance tank before

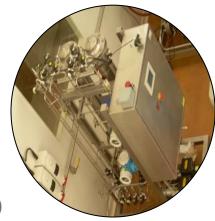
Effect of Process Unit Operations on Chlorate levels in WPC35 and SMP

Effect of Concentration Througout Processing on Chlorate levels					
WPC35		mg/kg	ppb	Typical TS	
WPC35	Pre-Evap Concentrate	0.056	56	12%	
WPC35	Post Evaporator Concentrate	0.23	230	38-40%	
WPC35	Powder	0.8	800		
SMP					
Skim Silo		0.019	19		
Skim Milk Pre-Evap	Ex Silo	0.023	23	8-9%	
Skim Milk Post Evap	Ex Silo	0.11	110	51-52%	
Skim Powder	Ex Silo	0.23	230		
Skim Milk	Ex Silo	0.024	24	8-9%	
Skim Milk Post Evap	Ex Silo	0.13	130	51-52%	
Skim Powder	Ex Silo	0.25	250		


Need to consider the contribution of Chlorates from the process water!

4. Summary / Key Findings

- Raw Milk (data variable)
- Levels in Whey / Skim > than lactose
- Skim Milk
 - Increased levels found in evaporator balance tank with one company?
 - Evaporator: increases in chlorate content (concentration effect)
 - Spray dryer: increases in chlorate levels (concentration effect)
 - first powder of the dryer significantly higher in chlorates (chlorates deposited on the dryer during start-up)
 - Dairy processor 3 found chlorates in powder higher than concentrate?
- Chlorine Gas produced lowest levels of Chlorates
 - Reduced levels during processing (Process water, Flush water, Push water, CIP water)
- Sodium hypochloride led to increased chlorates levels



Possible Follow-ups

- Risk analysis on all product / water interfaces
- Independent validation of Chlorates methodology on different dairy ingredients / concentrations (using same instrument / set-up)
- Kinetics of Chlorate formation vs in-process temperature/time combination
- Experiments to understand variation between powder and liquid samples
 - The matrix effect (skim vs whole milk; concentrate vs. powder)
 - The extraction procedure
- Controlled experiments to test the effect of the spray dryer on chlorate formation
 - Evaporator / Pilot dryer; Chlorate minimised CIP
 - High solids mix (no evaporation) run to test the dryer
 - Concentrate (freeze dried) vs. powder (reconstituted back to the same solids)
 - Dried with and without nitrogen injection (reduced Oxygen); De-aerated.
- Effect of concentration in whey products; controlled experiments with RO / deionised water; demineralisation; standardisation; pH (especially de-Min); Ion exchange (HCL, NaOH and/or NaCl used as regenerants).

