

Life Cycle Assessment of Greenhouse Gas Balances in Irish Short Rotation Forestry

WP4 – UL: Mike Clancy, Dr. Ken Byrne

Wednesday 14th December 2016

Contents

- ShortFor project overview
- Life cycle assessment (LCA) project definition
- LCA framework, materials & methods
- LCA assumptions
- Biomass yields & project results to-date
- Conclusion LCA work remaining

Project overview

• Context:

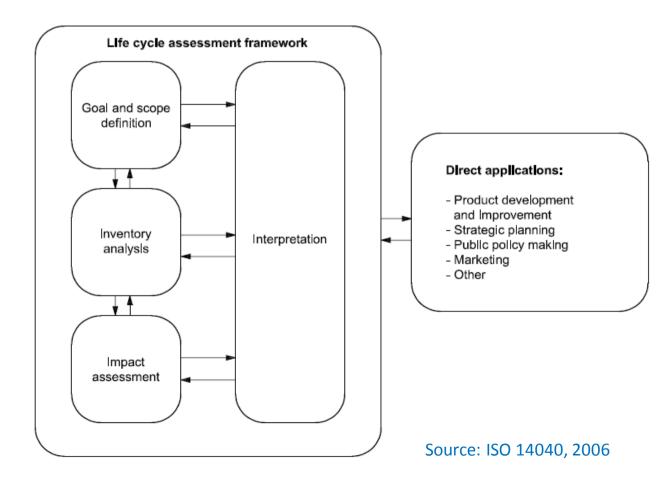
 Assess the environmental impacts of Short Rotation Forestry (SRF) biomass for renewable bioenergy.

• SRF definition:

- In this project SRF is confined to single stem species suitable to Irish climate and soil conditions.
- Plantations managed over rotations of 10-15 years.
- Minimum planting density of 2,500 stems ha⁻¹.
- Potential Irish SRF genera: Eucalyptus, Italian Alder, Hybrid aspen & Poplar clones. As specified in the DAFM 2014-2020 "Forestry for Fibre" Grant and Premium Categories.

ShortFor: LCA - project definition

• LCA context:


 Measure the environmental impact of SRF biomass for bioenergy, by examining the GHG balance of the material and energy inputs and outputs within a defined system boundary.

• Scope of current LCA study:

- SRF: Eucalyptus nitens biomass (stem, wholetree, stump) over 10 year rotations.
- Reference system: Potentially available biomass for bioenergy from Sitka spruce (SS) forestry, i.e., pulpwood from thinnings and clearfell, forest residues, and stumps.
- Biomass life cycle: cradle-to-gate (nursery to power plant gate).
- The functional unit (FU), a quantitative measure of the functions that the product or service provide, for this study is 1 ha of biomass converted to woodchip (m³ loose volume (l.v.)).

LCA framework and applications

- LCA is a method of comparing products and services using the framework outlined below, which can identify environmental impacts attributable to resource consumption, emissions and wastes (Pennington et al, 2004).
- The LCA is usually conducted via specialised software tools and databases, e.g. openLCA v1.5 and ecoinvent v3.2, respectively.

LCIA methods

• ReCiPe Midpoint (H) = GWP over 100 years

"The main objective of the ReCiPe method is to provide a method that combines Eco-Indicator 99 and CML, in an updated version" (GreenDelta, 2015).

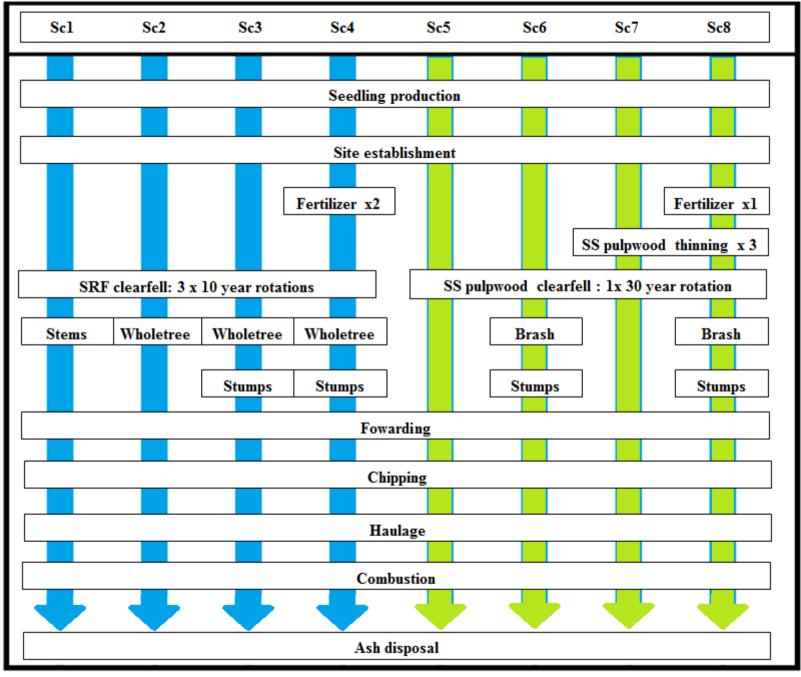
<u>ReCiPe distinguishes two levels of indicators:</u>

- 1. Midpoint indicators = environmental impact characterisation
 - radiative forcing
 - PM10 concentration
 - ozone concentration
- 2. Endpoint indicators = the following characterisation:
 - damage to human health (DALY)*
 - damage to ecosystems
 - damage to resource availability

Materials & Methods

- LCA software tools: openLCA v.1.5, MS Excel.
- LCA data: Ecolnvent v.3.2, literature on Irish and international forest bioenergy LCA.
- Biomass harvest and combustion options for:

LCA scenarios:


- 1. SRF stem-only
- 2. SRF whole-tree
- 3. SRF whole-tree + stump
- 4. SRF whole-tree + stump + N, P, K fertilizer
- 5. SS clearfell pulpwood
- 6. SS clearfell pulpwood, brash + stump
- 7. SS thinning + clearfell pulpwood
- 8. SS thinning + clearfell pulpwood, brash + stump, +N, P, K fertilizer

LCA Assumptions

- 1. Aboveground biomass harvesting is 98% mechanized cut-to-length (CTL), 2% manual power sawing.
- 2. All biomass is left to season in the forest to dry to 45% moisture content.
- 3. SRF/*E. nitens* biomass yields based on literature, solid over bark (o.b.)
- 4. Irish grown E.nitens basic density = 435 kg m⁻³
- 5. Irish grown Sitka spruce (SS) basic density = 380 kg m⁻³
- 6. Solid biomass to woodchip/hogfuel conversion factors are based on Irish data.
- 7. SRF biomass yields for each rotation are the same.
- 8. SS biomass yields based on GROWFOR modelling of Dooary, Co. Laois site.
- 9. SS available biomass for bioenergy consists only of thinning and/or clearfell pulpwood (7-13 cm diameter), all other roundwood goes to sawmills.
- 10. Combustion of biomass takes place at Edenderry Power (EPL), with ash disposal to local landfill.
- 11. Transport of machinery and materials is included in each life cycle process.
- 12. Upstream supply chains for materials, machines, and infrastructure per Ecoinvent v3.2 are included.
- 13. GHG balance related to direct land use change (LUC) is included, indirect LUC is not.

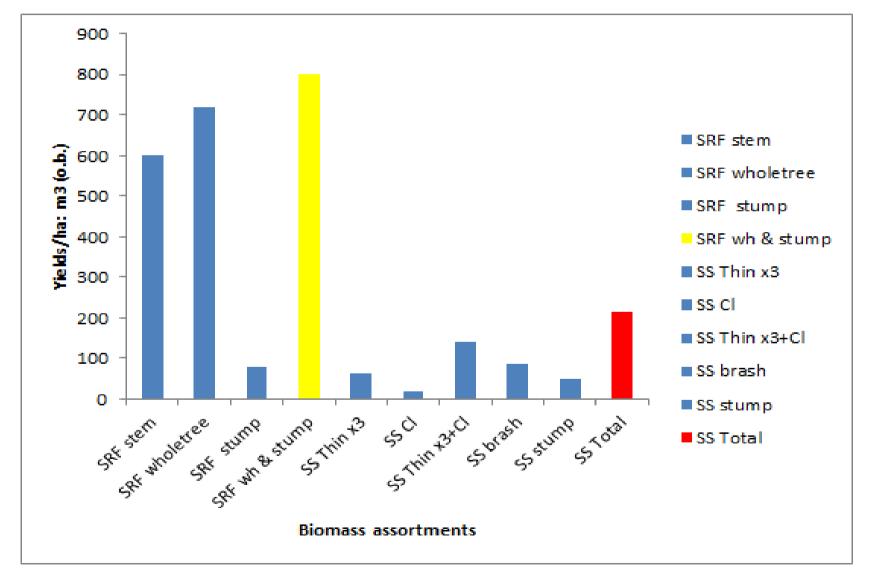
LCA system boundary

SRF harvesting operations: stems, whole-tree, and stumps

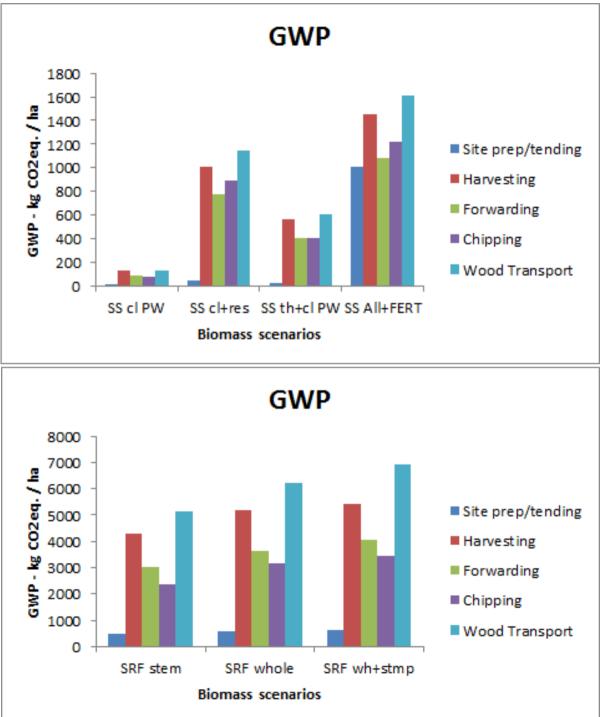
SRF and SS biomass yields (solid m³ o.b.)

SRF Assortments	SRF stem-only (m ³ ha ⁻¹)	SRF wholetree (m ³ ha ⁻¹)	SRF stump ³ (m ³ ha ⁻¹)	Total SRF wholetree & stump biomass (m ³ ha ⁻¹)
Clearfell rotation #1 (10 yrs)	200	240	27	267
Clearfell rotation #2 (20 yrs)	200	240	27	267
Clearfell rotation #3 (30 yrs)	200	240	27	267
Total Clearfell - 3 rotations	600	720	81	801

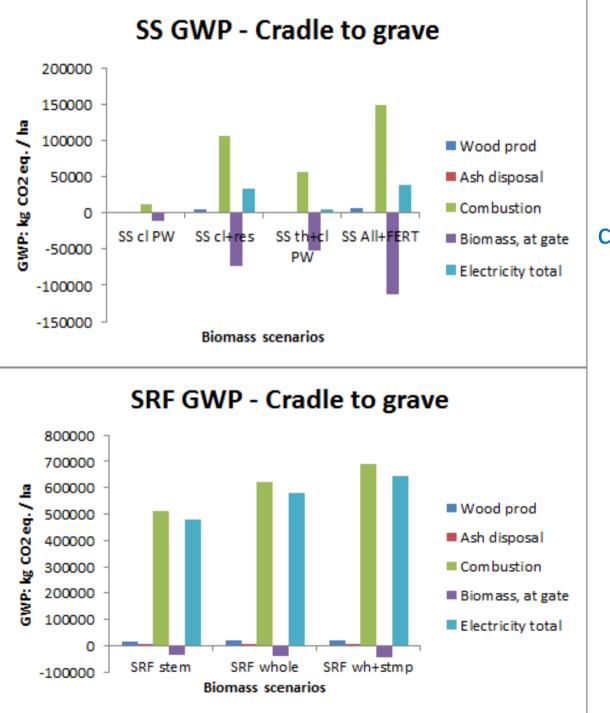
SS Assortments	SS totals: above & belowground biomass (m ³ ha ⁻¹)	SS Roundwood (14 - > 20 cm) (m ³ ha ⁻¹)	SS Pulpwood (7 - 13 cm) (m ³ ha ⁻¹)
SS Thin #1 (18 yrs)	50	20	30
SS Thin #2 (22 yrs)	50	31	19
SS Thin #3 (26 yrs)	50	37	13
SS Thin total			62
SS Clearfell (30 yrs)	521	503	18
SS Thin x3 + Clearfell at 30 yrs	671	591	80
SS clearfell brash ¹	156	=>	86
SS clearfell stump ²	115	=>	48
Total biomass (m ³ ha ⁻¹) 1x30 yr. rotation	942		214


*ABG = Aboveground biomass

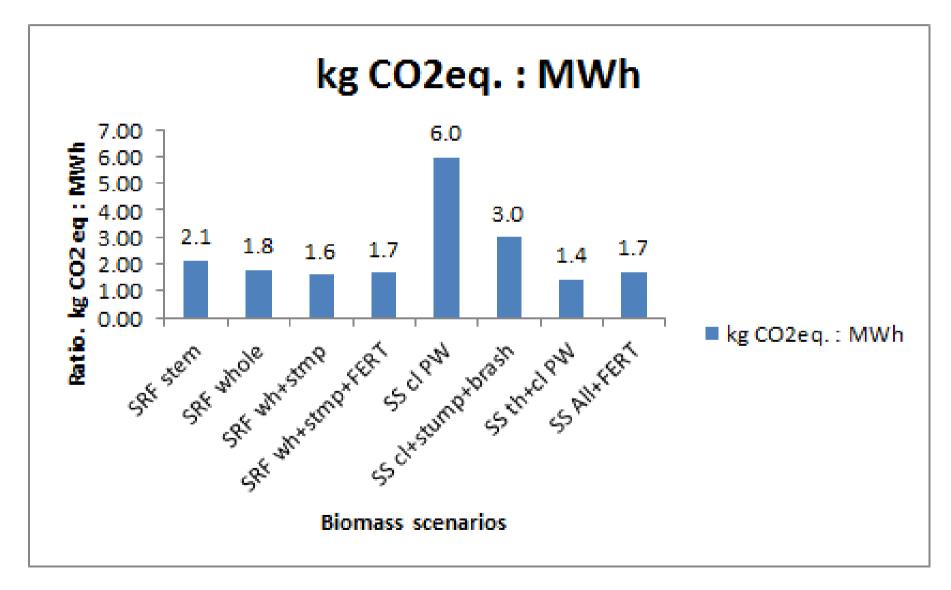
¹ SS brash (available yield = 30% of clearfell ABG, only 55% removed)


² SS stump (available yield = 22% of clearfell ABG, only 42% removed)

³ SRF stump (available yield = 22.5% of wholetree, only 50% removed)



GWP comparison of SS & SRF bioenergy production scenarios



GWP comparison of SS & SRF scenarios

GWP Cradle to grave

Conclusion: LCA work remaining

- Uncertainty analysis
 - Quantifying the uncertainty in the LCI results due to the cumulative effects of model imprecision, input uncertainty, and data variability.
- Sensitivity analysis
 - Estimating the effects of the choices made regarding methods and data on the study results.
- Interpretation phase
 - Assess greenhouse gas (GHG) balance of Irish SRF in comparison to SS, in terms
 of reaching the goal of 16% renewable energy by 2020.
- Acknowledgements:
- Project funding provider DAFM
- My supervisor Dr. Ken Byrne
- ShortFor project partners: UCD, WIT, Coillte, Teagasc, TCD.

Thank you for your attention.