SHORTFOR Meeting

WP4 – Environmental sustainability

Nutrient and hydrological balance of a SRF system

Mark O'Connor Liwen Xiao

Department of Civil, Structural and Environmental Engineering TCD

- SRF has the potential to both threaten and benefit water quality.
- Undisturbed forests or woodland represent the best possible protection for land from sediment and pollutant losses (Novotny, 2003).
- The level of forestry is critical factor affecting the quality of water resources in Ireland (O'Donoghue et al., 2010)
- SRF is expected to improve water quality compared to arable cropping and intensive farming:

Lower nitrate and other nutrient leaching,

Soil erosion control and lower suspended solid release,

Nisbet et al., 2011

Arable fields		Grassland		Woo	dland
26.4 kgN/ha/y		15.5 kgN/l	na/y	0.4 kg/ha/y	
Winter cereals	Oilseed rape		Potato		Woodland
2.8 kgN/ha/y	3.4 kgN/ha/y		4.7 kgN/ha/y		1.2 kgN/ha/y

0-24 kg N/ha/y for woodland

Nisbet et al., 2011

- In Ireland, arable land increased by 1%, maximum chlorophyll in the lake increased by 0.48%. Forest increased by 1 %, maximum chlorophyll increased by 0.07%. (Curtis and Morgenroth, 2013)
- Lough Leane catchment, 47% from agriculture, only 3% P from forest (Coillte)

- SRF for treatment of contaminated lands, water and wastewater
- SRF could be used to improves water quality where N and P release are high
- Potential beneficial for flood management

- The potential high water use of SRF crops
- Acidification in acid sensitive areas
- Potential high N/P/SS release during fertilise/pesticide use and harvesting period
- Can be mitigated by apply good management practices

Time

Microcosm setup for nutrient and hydrological demand comparison

BNM standard nursery mix

Raised platform, secure enclosure and rain gauge, PAR and soil temp onsite 7 x Italian alder, E.nitens,
E.rodwayi, Sitka spruce,
lodgepole pine.
5 x Control/peat only

39L pots filled with 42L of compost Leachate collection in HDPE canisters under pots

2/04/2016 13:59:33 () 0068

2016 season height gain

Scaffold for hanging scales Kern Ch50k50 50g increments

Issues to note:

 Alder rust September onwards

 Poor performance of lodgepole, may be due to light competition or initial handling

Site setup peatland SRF study

- Exposed south facing site
- 150masl
- Second rotation from SS/LP mix
- Peat depth generally 1m+
- Site left 3-4 years prior to restocking

Site layout

- Mounded and drained at 8-10m intervals
- Restocked with SS March/April 2014 (coillte)
- Restocked with eucalyptus june 2014 (source D-plant)
- No fertiliser/fisheries area
- 30 per plot/90 per species
- Species selected for cold hardiness, swamp affiliation, popularity and availability.

E.rodwayi (good&bad)

E.Nitens (good&bad)

Species height with STDEV

