

Life Cycle Assessment of Greenhouse Gas Balances in Irish Short Rotation Forestry

Research Perspectives on the Optimal Use of Forest Biomass

University of Limerick
Wednesday 28th September 2016

Mike Clancy, Ken Byrne

Contents

- ShortFor project overview
- Life cycle assessment (LCA) project definition
- LCA framework, materials & methods
- LCA assumptions
- Biomass yields & project results to-date
- Conclusion LCA work remaining

ShortFor: Project overview

Context:

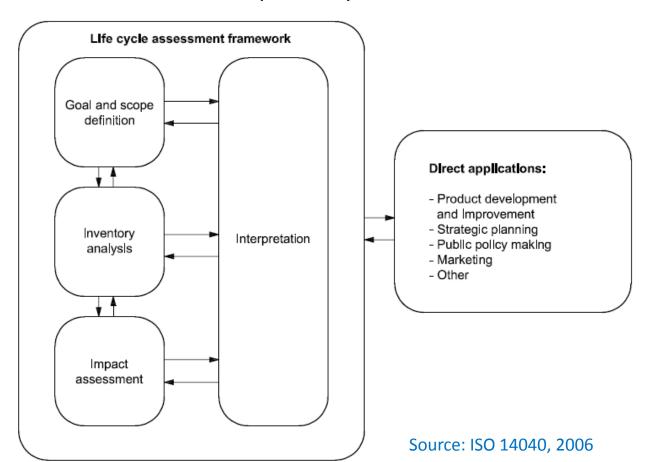
 Assess the environmental impacts of Short Rotation Forestry (SRF) biomass for renewable bioenergy.

SRF definition:

- In this project SRF is confined to single stem species suitable to Irish climate and soil conditions.
- Plantations managed over rotations of 10-15 years.
- Minimum planting density of 2,500 stems ha⁻¹.
- Potential Irish SRF genera: Eucalyptus, Italian Alder, Hybrid aspen
 Poplar clones. As specified in the DAFM 2014-2020 "Forestry for Fibre" Grant and Premium Categories.

ShortFor: LCA - project definition

LCA context:


 Measure the environmental impact of SRF biomass for bioenergy, by examining the GHG balance of the material and energy inputs and outputs within a defined system boundary.

Scope of current LCA study:

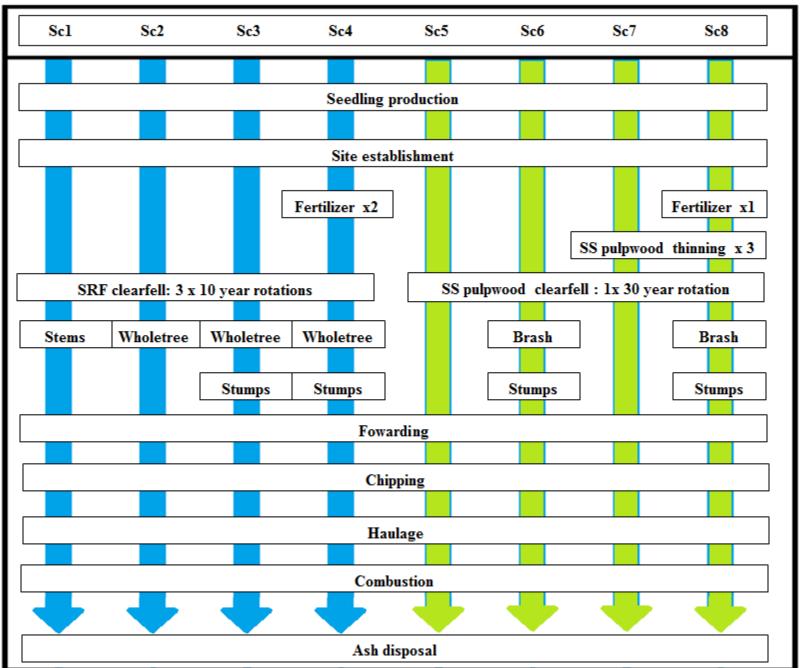
- SRF: Eucalyptus nitens biomass (stem, wholetree, stump) over a 10 year rotation.
- Reference system: Potentially available biomass for bioenergy from Sitka spruce (SS) forestry, i.e., pulpwood from thinnings and clearfell, forest residues, and stumps.
- Biomass life cycle: cradle-to-gate (nursery to power plant gate).
- The functional unit (FU), a quantitative measure of the functions that the product or service provide, for this study is 1 ha of biomass converted to woodchip (m³ loose volume (l.v.)).

LCA framework and applications

- LCA is a method of comparing products and services using the framework outlined below, which can identify environmental impacts attributable to resource consumption, emissions and wastes (Pennington et al, 2004).
- The LCA is usually conducted via specialised software tools and databases, e.g. openLCA v1.5 and ecoinvent v3.2, respectively.

Materials & Methods

- LCA software tools: openLCA v 1.5, MS Excel.
- LCA data: Ecolovent v.3.2, literature on Irish and international forest bioenergy LCA.
- Biomass harvest and combustion options for:


LCA scenarios:

- 1. SRF stem-only
- 2. SRF whole-tree
- 3. SRF whole-tree + stump
- 4. SRF whole-tree + stump + 10:10:20 (N, P, K) fertilizer
- 5. SS clearfell pulpwood
- 6. SS clearfell pulpwood, brash + stump
- 7. SS thinning + clearfell pulpwood
- SS thinning + clearfell pulpwood, brash + stump, +P, K fertilizer

LCA Assumptions

- 1. Aboveground biomass harvesting is 98% mechanized cut-to-length (CTL), 2% manual power sawing.
- 2. All biomass is left to season in the forest to dry to 45% moisture content.
- 3. SRF/E. nitens biomass yields based on literature, solid over bark (o.b.)
- 4. Irish grown E.nitens basic density = 435 kg/m3
- 5. Irish grown Sitka spruce (SS) basic density = 380 kg/m3
- 6. Solid biomass to woodchip/hogfuel conversion factors are based on Irish data.
- 7. Transport of machinery and materials is included in each life cycle process.
- 8. SRF biomass yields for each rotation are the same.
- 9. SS biomass yields based on GROWFOR modelling of Dooary, Co. Laois site.
- 10. SS available biomass for bioenergy consists only of thinning and/or clearfell pulpwood (7-13 cm diameter), all other roundwood goes to sawmills.
- 11. GHG balance related to land use change (LUC) is not included.

LCA system boundary

SRF harvesting operations: stems, whole-tree, and stumps

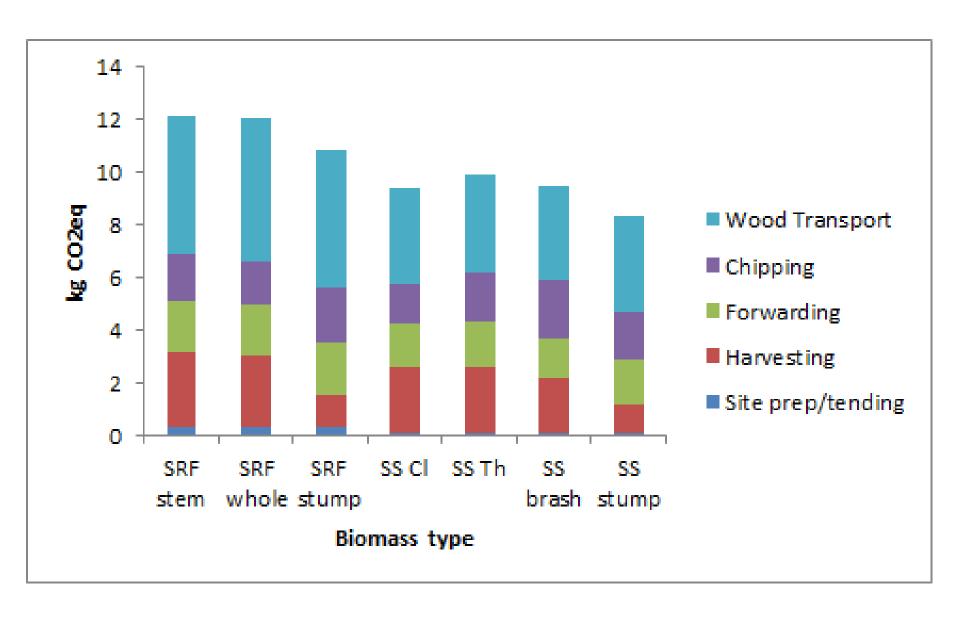
SRF and SS biomass yields (solid m³ o.b.)

SRF Assortments	SRF stem-only (m ³ ha ⁻¹)	SRF wholetree (m ³ ha ⁻¹)	SRF stump ³ (m ³ ha ⁻¹)	Total SRF wholetree & stump biomass (m ³ ha ⁻¹)
Clearfell rotation #1 (10 yrs)	200	240	27	267
Clearfell rotation #2 (20 yrs)	200	240	27	267
Clearfell rotation #3 (30 yrs)	200	240	27	267
Total Clearfell - 3 rotations	600	720	81	801

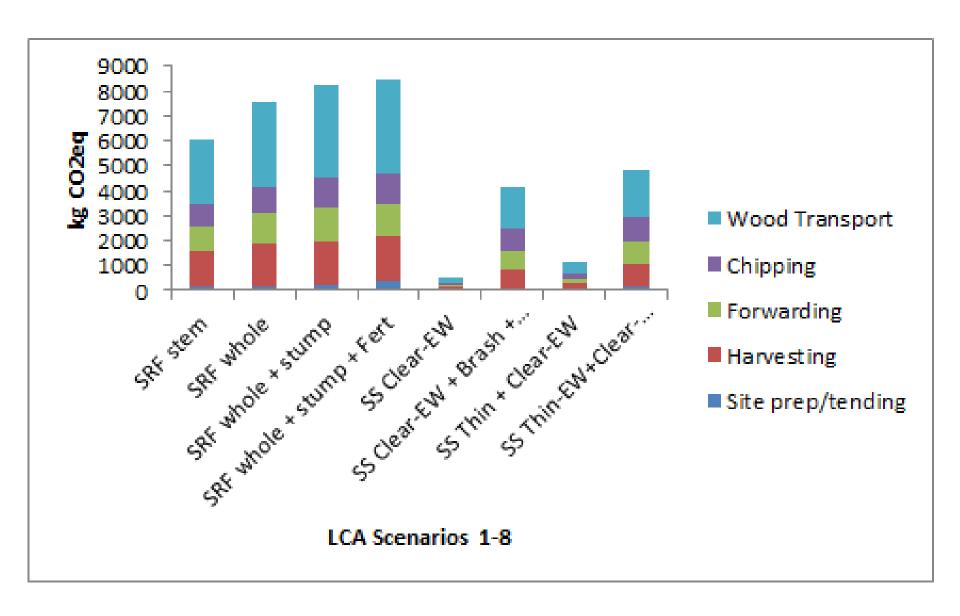
SS Assortments	SS Roundwood	SS Roundwood (14 -> 20 cm)	SS Pulpwood (7 - 13 cm)
	(m ³ ha ⁻¹)	(m ³ ha ⁻¹)	(m ³ ha ⁻¹)
SS Thin #1 (18 yrs)	50	20	30
SS Thin #2 (22 yrs)	50	31	19
SS Thin #3 (26 yrs)	50	37	13
SS Clearfell (30 yrs)	521	503	18
SS Thin x3 + Clearfell at 30 yrs	671	591	80
SS clearfell brash ¹	86	=>	86
SS clearfell stump ²	48	=>	48
Total biomass (m ³ ha ⁻¹) 1x30 yr. rotation	805		214

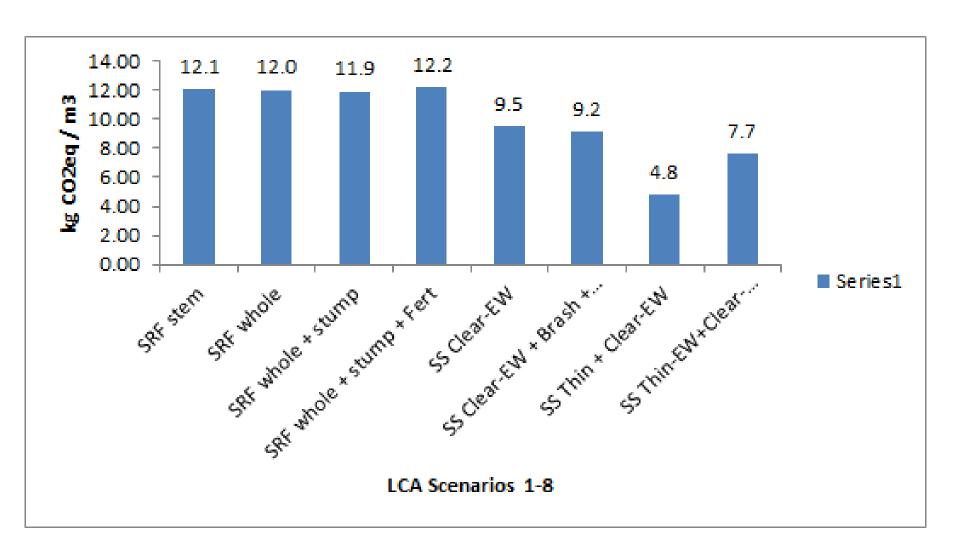
^{*}ABG = Aboveground roundwood biomass

SS brash (available yield = 30% of clearfell ABG, only 55% removed)


² SS stump (available yield = 22% of clearfell ABG, only 42% removed)

³ SRF stump (available yield = 22.5% of wholetree, only 50% removed)


18 yr. old Eucalyptus (*E. nitens*) beside 19 yr. old Sitka spruce, Cappoquin, Co Waterford (Thompson et al, 2012)


GHG balance: 1 m³ of biomass

GHG balance: 1 ha of biomass over 1 rotation

GHG balance: emissions per m³ of biomass

Conclusion: LCA work remaining

- Complete modelling to life cycle end
 - Combustion at Edenderry Power Ltd
 - Ash disposal to landfill
- Uncertainty analysis
 - Quantifying the uncertainty in the LCI results due to the cumulative effects of model imprecision, input uncertainty, and data variability.
- Sensitivity analysis
 - Estimating the effects of the choices made regarding methods and data on the study results.
- Interpretation phase
 - Assess greenhouse gas (GHG) balance of Irish SRF in comparison to SS, in terms of reaching the goal of 16% renewable energy by 2020.
- Acknowledgements:
- Project funding provider DAFM
- My supervisor Dr. Ken Byrne
- ShortFor project partners: UCD, WIT, Coillte, Teagasc, TCD.

Thank you for your attention.