An Investigation of the Economic Potential of Short Rotation Forestry in Ireland

Ana de Miguel,

Enda Coates and Tom Kent

Waterford Institute of Technology

Waterford Institute *of* Technology INSTITIÚID TEICNEOLAÍOCHTA PHORT LÁIRGE

ShortFor Conference. IIth December 2017

Outline:

- Research question and objectives
- SRF Stands
- Conversion tool
- Market survey
- Log yield products and value optimisation
- Conclusions

Introduction

Research question:

What is the financial value of Short Rotation Forestry in Ireland?

Introduction

Objectives:

- I. To identify **market opportunities** for growers of SRF in Ireland.
- 2. To develop a **conversion tool** to quantify and evaluate wood resources for different purposes.
- To explore how to optimise the financial value of the SRF in Ireland from the point of view of the landowner.

Conceptual framework

Introduction

Methodology: Stands data

Methodology: Stands data

- I. Systematic sample of the diametric distribution of each site
- 2. Measuring volumes
- 3. Taking destructive samples to determine tree biomass parameters:

- Dry weigh
- Moisture content
- Basic density
- Biomass Expansion Factor

Site	Species	Location	Age	Stocking (trees ha ⁻¹)	DBH (cm)	Height (m)	Basic density (kg m ⁻³)	M %	Above ground biomass expansion factor
I	Eucalyptus delegatensis	Kilbora, Co.Wexford	22	436	33	28.2	512	45	1.06
2	Populus spp.	Ballyhaise, Co. Cavan	17	352	39	25.0	311	52	1.27
3	Eucalyptus nitens	Cappoquin, Co.Waterford	23	841	29	30.7	388	60	1.11
4	Populus spp.	Kildalton, Co. Kilkenny	19	359	39	27.7	282	54	1.37

Methodology: Conversion Tool

- A_d = Ash content BD= Bulk density as received BD_d= Bulk density dry C= Carbon content C_{tot}= Total Carbon CO₂= Total CO₂ sequestrated
- D_d = Basic density m_d =Dry matter D_w = Gross density m_w = Total MassE= Energy contentN= Nitrogen Contentf= Volume Weight FactorO= Oxygen ContentH= Hydrogen content $q_{gr,d}$ = Gross calorificM= Moisture Content q_{redef} = Gross calorific
 - $\begin{array}{ll} m_d = \text{Dry matter} & q_{\text{net},d} = \text{Net calorific value dry} \\ m_w = \text{Total Mass} & q_{\text{net},m} = \text{Net calorific value ar} \\ N = \text{Nitrogen Content} & SVC = \text{Solid Volume Factor} \\ O = \text{Oxygen Content} & V_b = \text{Bulk volume} \\ q_{gr,d} = \text{Gross calorific value dry} & V_s = \text{Solid Volume} \\ q_{er,daf} = \text{Gross calorific value dry ash free} \end{array}$

Results: Conversion Tool

Example of use of the conversion tool Site 1.Eucalyptus delegatensis, 22 years old. Kilbora, Co. Wexford

Inputs	Outputs		
	Parameters	Quantity	Unit
Standing volume: 448 m ³ ha ⁻¹	Total mass (wet)	417	t ha ⁻¹
Moisture content: 45 %	Dry matter	229	odt ha ⁻¹
Basic density: 512 kg m ⁻³	Bulk volume (woodchip)	1120	m ³ ha ⁻¹
	Bulk volume (roundwood stacks)	640	m ³ ha ⁻¹
	Energy GJ	3859	GJ ha ⁻¹
	Carbon sequestered	112	t ha⁻¹
A State of the second s			No.

Methodology: Market survey

Sampling frame: Scope

- Wood energy: Firewood and woodchip for energy
- Panel board: Medium Density Fibre Board (MDF) and Orientated Strand Board (OSB)
- Sawmill: Fencing and pallet

Methodology: Market survey

Interviews and analysis

- Semi-structured interview, face to face
- Questions:
 - I. Awareness, perceptions and information wanted on SRF
 - 2. Source of raw material
 - 3. Requirements of raw material
 - 4. Purchase
 - 5. Supply-demand
- Responses analysis: spreadsheet

and qualitative management data software NVivo 10 —

de Miguel, A., Sottocornola, M., Cronin, B. and Kent, T. 2016. Exploring market opportunities for Short Rotation Forestry in the current Irish wood processing and solid biofuel sectors. *Irish Forestry* 73: 141-160.

Methodology: Market survey

Case study: SRF market assessment in Oregon

Identification of parameters and conditions that facilitated market development in Oregon

Recommendations for actions to develop market in Ireland

Methodology: Comparison market survey Ireland-Oregon

(In review). de Miguel, A., Sottocornola, M. and Kent, T. 2017. A comparison of market opportunities for Short Rotation Forestry in Ireland and Oregon. *Irish Forestry.*

Results: Comparison market survey Ireland-Oregon Knowledge on SRF Ireland Oregon Initial lack of knowledge Familiar with SRF 24% Not familiar with SRF 76% University and/or own SRF information and education needs identified by 70% research by 100% Most useful information: Information gaps in: - wood properties - wood and fuel properties - grading - drying rate - scale of supply - scale of supply

Results: Comparison market survey Ireland-Oregon

Willingness to use SRF

- The **wood energy** sector was the most favourable
 - Past experiences concerns (*Miscanthus*)

- High value products were needed to develop SRF
- Past experiences concerns (Poplar for paper production)

Results: Comparison market survey Ireland-Oregon

Requirements of the material

Ireland	Oregon
 Preferred source not from small landowners 	Large scale plantation
 Supply consistency Competitive price Particular appearance Certification 	→ Advantages
StraightnessLow moisture content	Challenges: Technology and breeding research
Particular species	→ Marketing: Pacific albus

Methodology. Log yield products and value optimisation

- Stem level (individual tree)
- Best situation for the **forest owner**
- **Dynamic programming** algorithm

*Murphy et al. 2010. Management tools for optimal allocation of wood fiber to conventional log and bio-energy markets in Ireland: a case study. European Journal of Forest Research.

Methodology: Log yield products and value optimisation

Methodology: Log yield products and value optimisation. Inputs

4 SRF stands

30 potential users

I I supply chains

- 44 stem profiles
- Stocking
- BEF
- Wood density

- Logs dimensions
- Log pricing (at mill gate)

Costs (Coates 2017):

- Harvesting
- Extraction
- Chipping
- Haulage

Methodology: Log yield products and value optimisation. Inputs

- Rings growth analysis of 2 stands
 - Eucalyptus nitens (Cappoquin)
 - Populus spp. (Kildalton)
- Stems profiles 10 to 20 years old

Example of rings growth of a *Eucalyptus nitens*

> Preliminary results: Log yield products and value optimisation.

e.g. Supply chain I: Cut to length sawlog and pulp. Current age.

Conclusions

- There is a **potential market** for SRF
- Research and dissemination need
- Supply consistency and local supply
- Wood energy or high value products?

Thank you!

