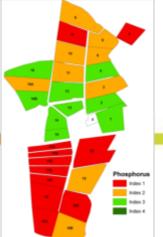


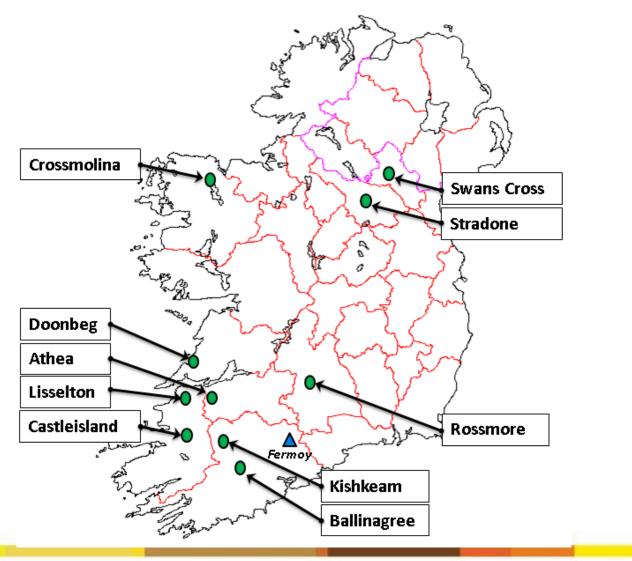
Teagasc Heavy Soils Programme Update: Tralee IT 14/11/2017

Teagasc Animal and Grassland Research and Innovation

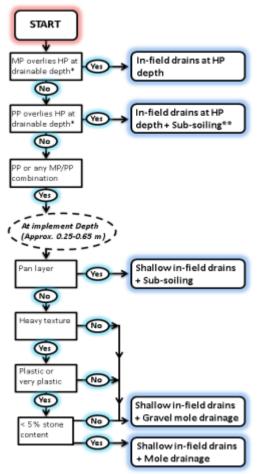


Background

- The Heavy soils programme aims to increase profitability, improve productivity and decrease volatility on farms with poorly drained soils.
- The programme has 10 commercial farm participants; in 8 Counties.
- Focus areas include land drainage, soil fertility and nutrient cycling, soil characterization, grassland management, fodder reserves, farm infrastructure and farm profitability.
- Farms are subjected to intensive monitoring. The data being generated allows for analysis of farm systems and the development of strategies to achieve programme aims
- Collaboration between AGRIP, CELUP and Advisory with support from Co-ops (Kerry, Dairygold, Tipperary, LacPatrick)

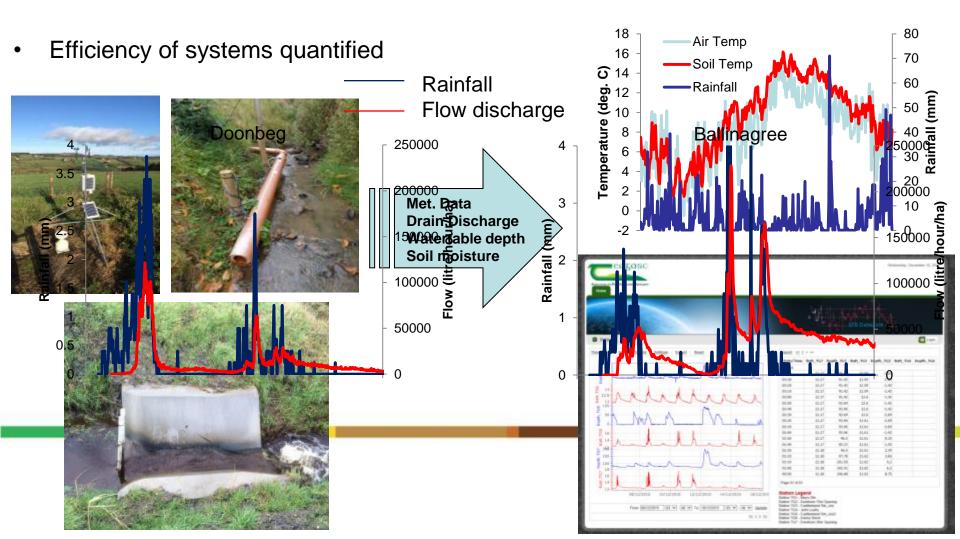


Heavy Soils Programme Farms



Land drainage system design

Development of a practical site-specific drainage design methodology


- The permeability of each horizon in test pit is scored using physical indicators (water seepage, texture, structure, etc.)
- Drainage design is based on this permeability classification
- A clear-cut methodology allows for widespread use
- Effective drainage design can be formulated on-site where an appropriate visual assessment of soil can be made

Monitoring drainage system performance

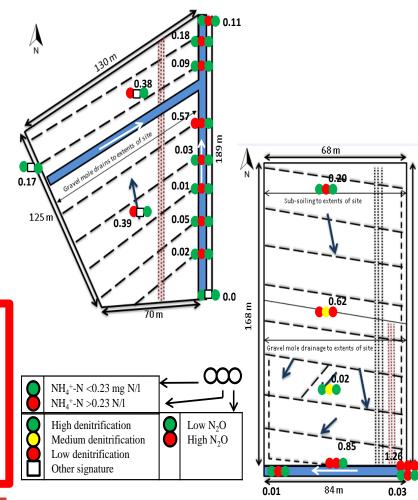
- Site specific land drainage systems installed on all farms
- Real time performance data is continuously collected

Water quality/Nutrient losses

- Water samples are collected from drain outflows and groundwater wells to establish nutrient loss pathways and rates
- Soils highly variable in terms of soil chemistry and permeability

GROUP 1 Doonbeg

- Low contamination
- Low denitrification
- Nitrification important
- Low N₂O, high N₂


GROUP 2 Kishkeam and Rossmore

- Low contamination
- High denitrification
- Intermediate N₂O, low N₂

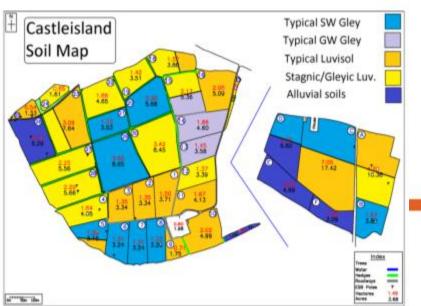
GROUP 3 Athea and Castleisland

- High NH₄⁺-N in GW and drainage water.
- Fate of nitrate affected by N Surplus
- Low N promotes bacteria capable of reparatory ammonification (DNRA) over denitrifers
- Low N₂O emissions

Bioreactor Needed but for Ammonium not Nitrate

Soil fertility status

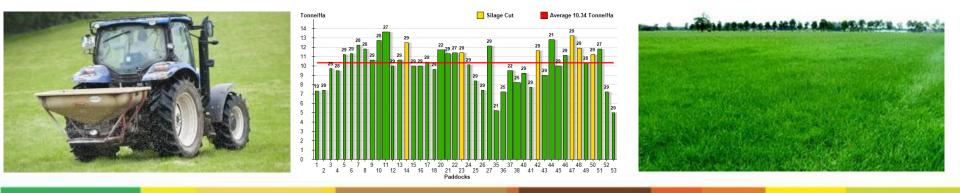
- Majority of farms are severely limited by poor soil fertility status
- A soil sampling campaign has been established: Every paddock, Every year and all inputs are recorded on farms
- Aim to develop strategies for improving fertility on heavy soils in light of technical, financial and legislative restraints



AGROCULTURE AND FOOD DEVELOPMENT AUTHORITY

Soil Surveying/Mapping

- August 2015 Present
- Soil augers (40 per farm) and test pits (4 per farm)
- Soil description and sampling
- Lab analysis of soil physical and chemical properties
- Soil type and horizon specific characterisation and soil sample archive
- Paddock scale soil maps and summary reports
- Contextualise all other data and underpin future work.



Production systems

Farm production and performance on poorly drained soils


- Monitoring whole farm systems
 - System inputs: Feed, fertiliser, lime, slurry
 - Management practices: Grassland, labour, contracting
 - System outputs: Animal performance & productivity
 - Financial Performance: Profit monitor, economics

Model simulations

- Model simulations of drain performance are dependent on high resolution performance data and detailed measurement of soil
- Simulation models allow for variations in drainage design to be tested at low cost
- Scope for assessing drainage systems across a range of soil types and climates

Classification of drainage system materials

Optimising the design of in-field drainage systems and their constituent materials

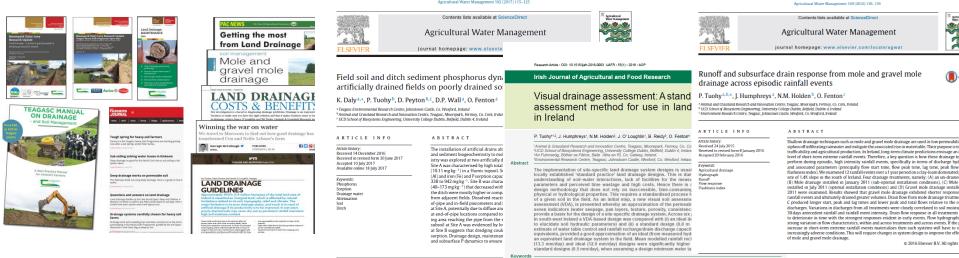
- Assess the drainage capacity and performance of a range of pipe/aggregate combinations
- Evaluate the performance of some other envelope materials (filters/membranes)
- Examine methods of reducing iron ochre deposition
- Currently recruiting!

The Irish Agriculture and Food Develop

Dissemination & Training

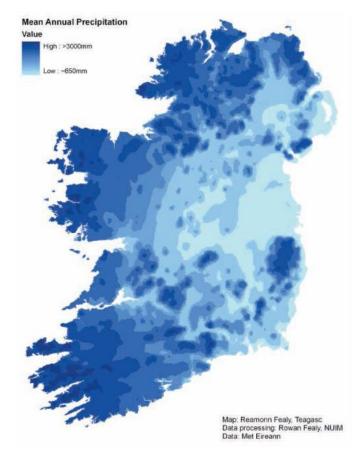
Agricultural land drainage-Theory and design training course (QQI certified)

- In response to chronic lack of suitably trained personnel
- Equip participants with the ability to design land drainage systems on a range of soils types
- 8 day course Includes
 - Classroom instruction
 - Practical sessions on the identification of soils and soil characteristics
 - Field trips to a range of sites to identify drainage problems and prescribe appropriate solutions.
- Started Oct. 2016-Run Annually



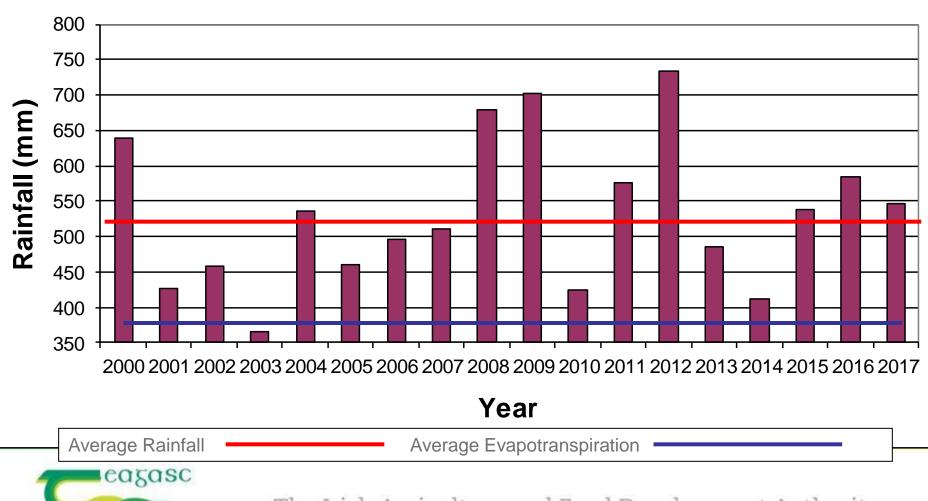
Dissemination & Training

• The programme delivers outputs in scientific and popular press


- design land drainage site-specific visual soil assessment
- And through public on-farm and training events

Soils and rainfall

- Marginal land occupies just under 50% of Irish land area
- Trafficability for machinery and livestock is a major limitation in wet conditions
- Use of such soils is curtailed due to;
 - Reduced stocking capacity and grass yields.
 - Increased susceptibility to surface damage and compaction.



HSP Farm Performance 2011 - 2016

		Stocking Rate		Herd EBI		6 week
Year	Herd Size	Farm	MP	Total	Fertility	calving %
2011	77	1.70	2.12	84	47	72
	05	4 74	2.27	112	70	<u> </u>
2012	85	1.71	2.27	112	73	68
2013	83	1.69	2.24	134	79	76
2014	85	1.85	2.30	150	87	74
2015	92	1.81	2.45	161	89	74
2016	100	1.85	2.56	82	35	69

Castleisland rainfall (April-September)

AGRECULTURE AND FOOD DEVELOPMENT AUTHORITY

HSP: Average Farm Performance

		Gross Output		Total Costs		Net M	1argin
Year	Milk Solids (kg/ha)	(€/Ha)	(c/litre)	(€/Ha)	(c/litre)	(€/Ha)	(c/litre)
2011	950	3236	25.6	1838	20.3	1200	15.2
2011	850	5250	35.6	1020	20.5	1398	15.3
2012	869	3092	35.4	2143	24.7	948	10.7
2013	940	3689	40.0	2332	25.4	1357	14.6
2014	935	3725	39.0	2134	22.4	1591	16.9
2015	1091	3245	32.2	2145	21.2	1100	10.8
2016	1068	2935	28.3	1911	19.7	954	8.6

HSP: Comparative Farm Performance 2016

		Gross Output		Total Costs		Net Margin	
Farms	Milk Solids (kg/ha)	(€/Ha)	(c/litre)	(€/Ha)	(c/litre)	(€/Ha)	(c/litre)
HSP Mean	1068	2935	28.3	1911	19.7	954	8.6
HSP Range	881 - 1430	2389 - 3703	25.8 – 31.4	1441 - 2466	14.6 – 23.9	307 - 1640	1.8 – 14.2
364 Profit							
monitors							
Mean	1015	3698	29.5	2557	20.4	1166	9.1

6 week calving %

	2013	2014	2015	2016
Location				
Castleisland	69	59	62	80
Doonbeg	81	78	88	86
Athea	82	80	85	88
Kishkeam	87	87	84	76
Listowel	66	68	67	81
Rossmore	72	64	69	64
Ballinagree	74	79	60	72
Swanscross		25	7	15
Stradone		45	24	58
Average	76	74	74	69

Grass Production 2016 (>15 walks)

	Da	te			Tonnes (DM/Ha)			
	First	Last	Walks	Grazing* Area (Ha)	Grown	Spring	Summer	Autumn
Castleisland	14 th Mar	13 th Nov	29	41.7	11.6	0.2	7.4	4.0
Ballinagree	25 th Feb	7 th Nov	23	44.5	11.9	0.4	7.4	4.1
Doonbeg	1 st Feb	1 st Nov	37	36.8	12.1	0.2	8.3	3.6
Athea	8 th Mar	5 th Nov	42	39.3	11.4	0.6	7.3	3.5
Rossmore	11 th Mar	10 th Nov	28	31.1	12.7	0.4	7.7	4.6
Kishkeam	14 th Mar	Oct 28 th	23	42.1	8.6	0.2	5.5	2.9
Listowel	24 th Feb	10 th Nov	22	31.3	11.1	0.4	7.5	3.1
Crossmolina	28 th April	5 th Nov	15	11.2	7.9	0.1	6.0	1.8
Stradone	20 th Feb	9 th Nov	27	29.8	10.0	0.3	6.4	3.3
Swanscross	26 th Feb	10 th Nov	15	30.3	10.5	0.3	6.7	3.5
Average	6 th Mar	6 th Nov	26	33.8	10.7	0.3	7.0	3.4

Grass Production Best Paddock 2016

					Best	Paddock			
	Average	Spring	Summer	Autumn	No.	Growth	Spring	Summer	Autumn
Castleisland	11.6	0.2	7.4	4.0	12	14.4	0	8.7	5.6
Ballinagree	11.9	0.4	7.4	4.1	18	12.8	0.5	8.6	3.8
Doonbeg	12.1	0.2	8.3	3.6	6	16.9	0.2	11.4	5.4
Athea	11.4	0.6	7.3	3.5	10	13.4	0.8	8.1	4.4
Rossmore	12.7	0.4	7.7	4.6	14	14.9	0.8	8.2	5.9
Kishkeam	8.6	0.2	5.5	2.9	26	13.0	0	8.2	4.8
Listowel	11.1	0.4	7.5	3.1	9	12.7	1.0	8.3	4.8
Stradone	10.0	0.3	6.4	3.3	29	13.9	1.0	7.8	5.2
Average	11.2	0.3	7.2	3.6		14.0	0.5	8.7	5.0

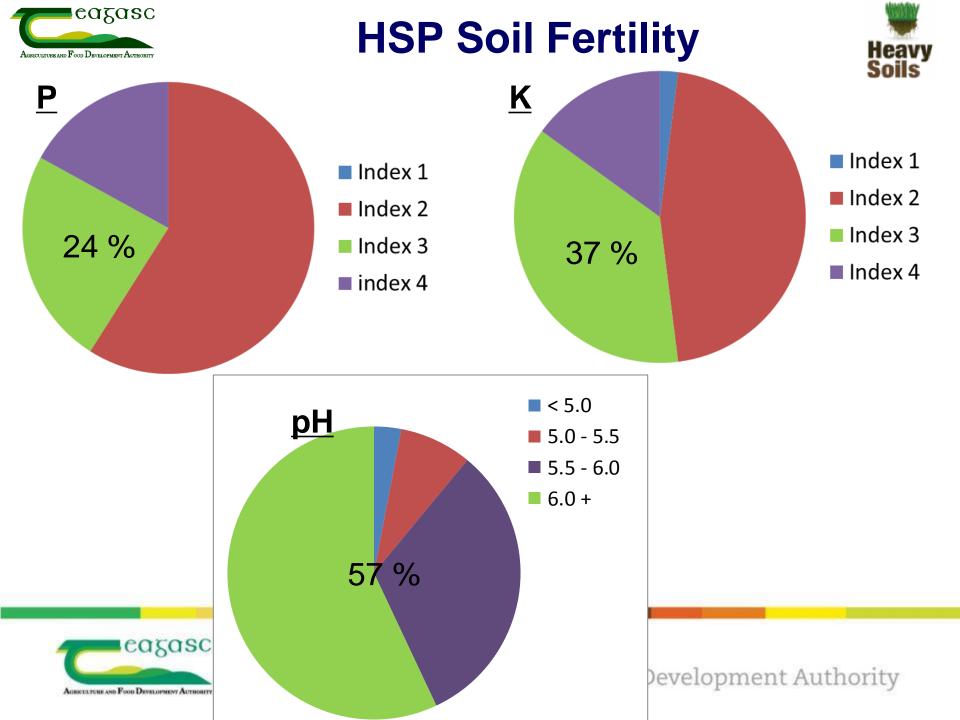
Soil Fertility: pH Status

	2013	2014	2015	2016
Location				
Castleisland	5.5	5.7	5.9	6.1
Doonbeg	5.8	5.8	5.7	6.1
Athea	5.5	5.8	6.2	6.6
Kishkeam	5.8	5.8	6.2	6.2
Listowel	5.7	5.5	5.9	6.0
Rossmore	5.8	5.8	6.2	6.5
Ballinagree	5.8	5.9	6.5	6.5
Crossmolina	5.4	5.6	5.7	6.1
Swanscross			6.4	6.5
Stradone			6.2	6.5
Average	5.7	5.7	6.1	6.2
Target	6.2	6.2	6.2	6.2

Soil Fertility: Phosphorus mg/l

Location	2013	2014	2015	2016
Castleisland	4.7	6.4	4.2	6.0
Doonbeg	4.9	5.6	5.5	4.4
Athea	3.1	4.9	3.7	4.1
Kishkeam	1.9	4.4	2.8	3.0
Listowel	5.4	9.8	6.5	5.0
Rossmore	8.5	11.0	10.7	11.2
Ballinagree	5.6	6.5	5.1	6.9
Crossmolina	7.6	3.4	4.4	5.8
Swanscross			6.2	5.8
Stradone			3.1	5.1
Average	4.9	6.5	5.2	5.6
Target	5.1 - 8.0	5.1 - 8.0	5.1 - 8.0	5.1 - 8.0

Soil Fertility: Potassium mg/l


Location	2013	2014	2014 2015	
Castleisland	94	110	87	115
Doonbeg	74	96	91	57
Athea	134	125	104	111
Kishkeam	82	112	88	92
Listowel	89	140	105	94
Rossmore	97	95	106	104
Ballinagree	144	155	115	147
Crossmolina	105	112	73	92
Swanscross			170	150
Stradone			142	153
Average	102	118	108	112
Target	101 – 150	101 – 150	101 – 150	101 – 150

Ground cover ryegrass%

Location	2011	2012	2013	2014	2015	2016
Castleisland	34	16	26	30	31	24
Doonbeg	30	22	29	28	28	24
Athea	26	19	33	37	38	30
Kishkeam	29	17	25	27	32	25
Listowel	17	11	18	22	22	18
Rossmore	28	25	43	40	41	42
Ballinagree	32	15	27	28	26	28
Crossmolina				16	20	18
Stradone					39	
Swanscross					44	
Average	28	18	29	29	32	26

Relative Soil P Retention Capacity (permanently fixed P) 1600 P Retention Capacity 1400 1200 Fe mg TJR 1000 800 JL Z 600 SOR 400 200

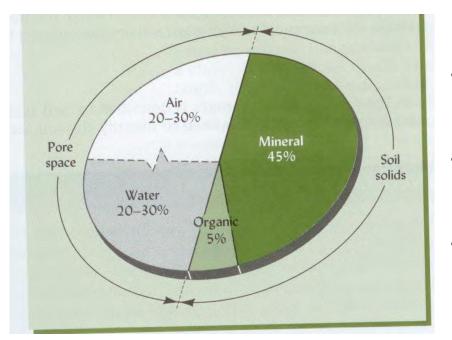
Organo-Min. Soil

0

Mineral Soil

Land Drainage

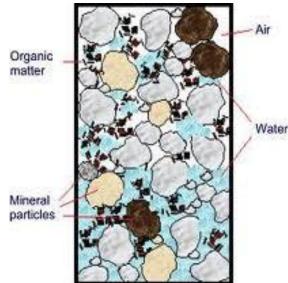
Overview


- Soil Physics
 - Soil Phases
 - Soil Texture
 - Soil Structure
 - Water Movement through soil
- Land Drainage
 - Drainage investigations
 - Types of Drainage Systems
 - Drainage pipe, stone & backfill
 - Maintenance
 - Cost
 - EIA Legislation
 - References

Soil Phases

- Air and water phases occupy the pore space and are complimentary
- Pore space in a saturated soil is filled with water.
- Crops require a minimum 10 -15% air filled pore space for water and nutrient uptake

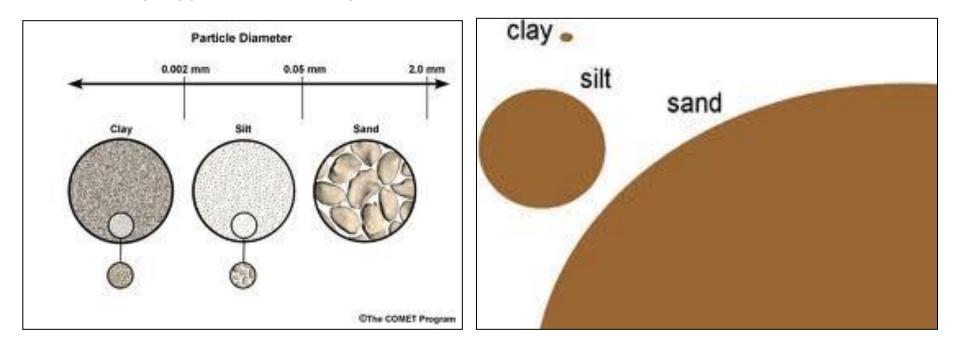
Soil Solids


Soil solids consist of mineral and organic materials

Organic Material (<10% in mineral soils)

- Stores water and nutrients
- Binds mineral particles

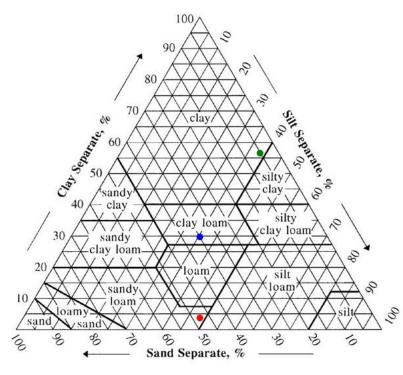
Mineral Particles


- Sand, silt and clay (plus larger particles gravel, stones, etc.)
- Size and arrangement of solid particles bear huge influence on water movement

Soil Texture

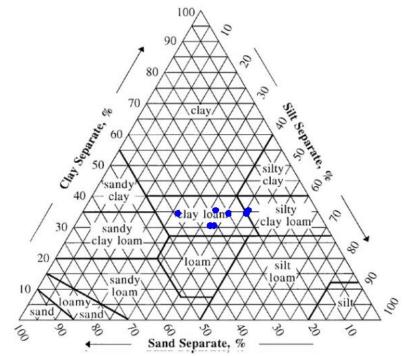
- The relative proportions of sand, silt and clay particles in a soil
- Anything bigger than 2mm is gravel/stone

Soil Texture


- Sand: Feels gritty, large enough to be seen with the naked eye
- Silt: Feels smooth/floury, Individual grains not visible.
- Clay: Feels sticky & cohesive, resists breaking, mouldable
- Estimating soil texture by feel: <u>http://www.ksre.ksu.edu/library/crpsl2/mf2852.pdf</u>

	Rating associated with soil particles						
Property	Sand	Clay					
Drainage Rate	High	Slow to medium	Very slow				
Water holding capacity	Low	Medium to high	High				
Compactability	Low	Medium	High				
Warm-up in spring	Rapid	Moderate	Slow				

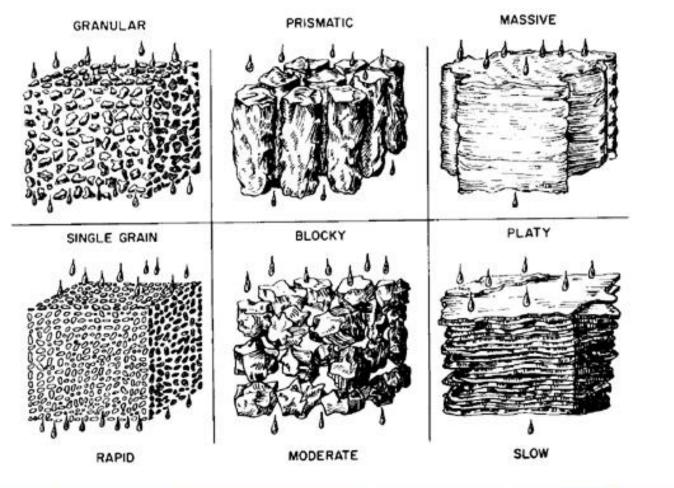
Texture Triangle


- Classification of soils into textural groups
- Classification is assigned after lab or field analysis of soil samples
- On the left the numbers correspond to the % of clay, on the right the numbers correspond to the % of silt. At the bottom of the chart are the % of sand.
- To classify a soil sample, find the intersection of the three lines that correspond to the three proportions of sand, silt and clay.

Texture Triangle

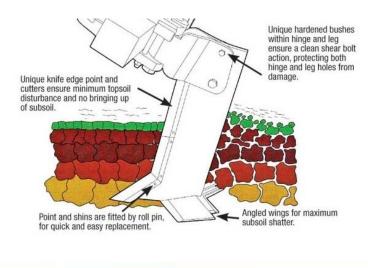

- Moorepark (RED-48% sand, 48% silt, 4% clay)
- Blue-35% sand, 35% silt, 30% clay
- Green-5% sand, 38% silt, 57% clay
- HSP farms topsoils
- HSP farms subsoils

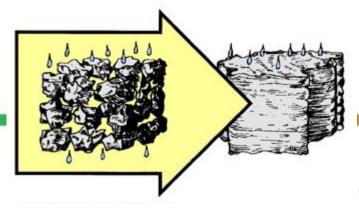
Soil Structure


- Arrangement of particles/level of cracking
- Structural development influenced by formation, texture and management.
- Greatly influences:
 - Water/Air infiltration & movement
 - Root penetration & growth

Three soil aggregates comprising many sand, silt, clay and organic particles

Soil Structure



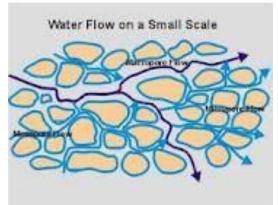


Altering Soil structure

- Greatly Influenced by management
- Weathering: Wetting/drying and freezing/thawing
- Biological process's: plant roots, earthworms
- Negative manmade changes: excessive cultivation, untimely operations on wet soil, heavy machinery.
- *Positive manmade changes*: tilling, drainage, subsoiling, mole ploughing etc.

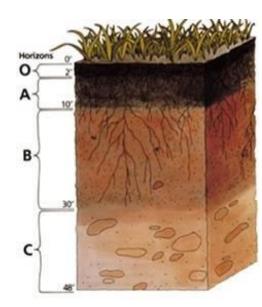
Agriculture and Food Development Authority

Water movement through Soil


- Hydraulic conductivity: The rate at which water moves through the soil pores.
- Dependent on texture, structure and porosity
- This property varies enormously.

Hydraulic Conductivity Values	metres/day
Coarse Gravelly Sand	10 - 50
Medium Sand	1 - 5
Sandy Loam/Fine Sand	1 - 3
Loam/clay loam/clay, well structured	0.5 - 2.0
Very fine sandy loam	0.2 - 0.5
Clay loam/clay, poorly structured	0.02 - 0.2
Dense clay, not cracked and no biopores	< 0.002
	Smedema & Rycroft, 1983

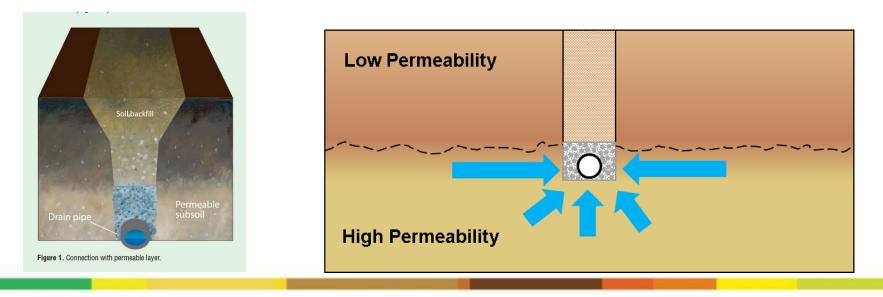
Water movement through Soil


- In free draining soils the rate of water flow through the soil will be higher than all bar very extreme rainfall rates.
- In poorly drained soil the rate of water flow can be regularly exceeded by rainfall rate due to:
 - Low hydraulic conductivity
 - High Water table due to low lying position and poor out-fall
 - Upward movement of water from seepage and springs

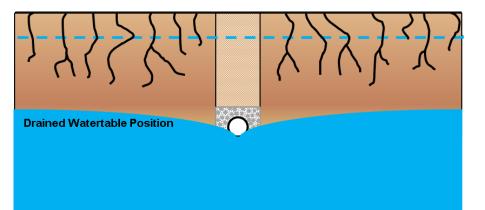
Drainage Investigations

- When planning a drainage system an investigation into the causes of poor drainage must first be undertaken
- No "one size fits all" solution
- A number of test pits (at least 2.5m deep) should be dug within the area to be drained
- As the test pits are dug the faces of the pits are observed, soil type (texture and structure) should be established (varying with depth) and rate of water seepage (if any) recorded.
- Are there layers impeding or permitting water movement ?

Types of drainage system

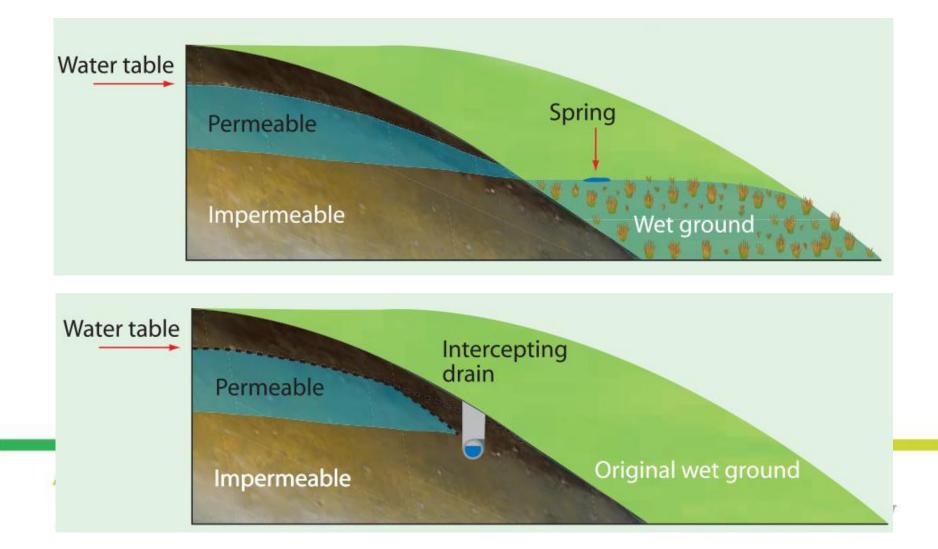

- The depth and type of drain to be installed depends entirely on the interpretation of the test pits.
- Two principle types are distinguished:
 - **Groundwater drainage system:** A network of deeply installed piped drains exploiting permeable layers
 - Shallow Drainage system: Where soil is heavy and infiltration of water is impeded at all depths and permeability needs to be improved

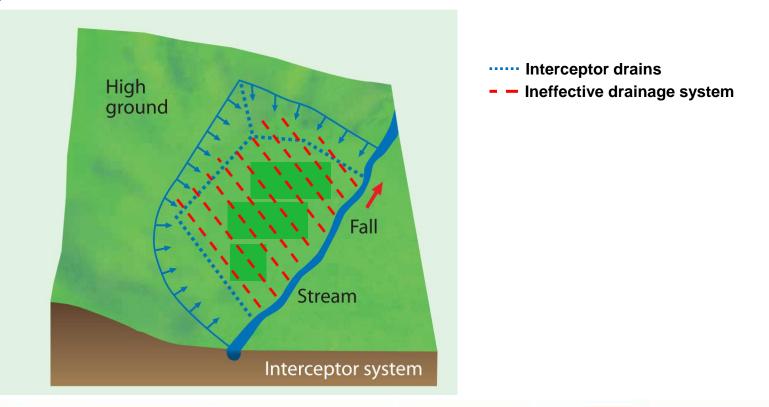
Groundwater Drainage System


- A Groundwater drainage system is a network of field drains collecting groundwater which can move through soil layers of high permeability
- They work by exploiting the natural capacity for movement of water at a certain depth in certain soils
- Often heavy textured soils overlie soils of much higher permeability (poorer subsoils closer to the surface and more permeable layers underneath)

Groundwater Drainage System

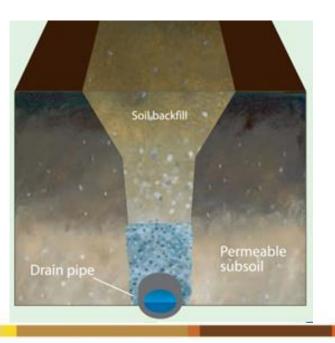
- By "tapping" into this natural capacity for water movement the system works by lowering the watertable and reducing the amount of water stored in the soil
- When it rains water can now infiltrate through the soil. Water storage is reduced so
 capacity is increased
- By controlling the water table, natural (cracking, root penetration) or artificial (subsoiling/ripping) improvements in permeability in the shallower layers can occur




Groundwater Drainage System

Groundwater seepage and springs

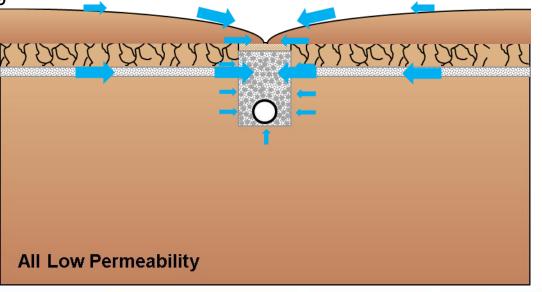
Groundwater Interceptor Drains


- Groundwater interceptor drains are used to prevent water breakout on sloped land
- A well placed system of interceptors can be cheaper and more effective than drainage works on low-level land

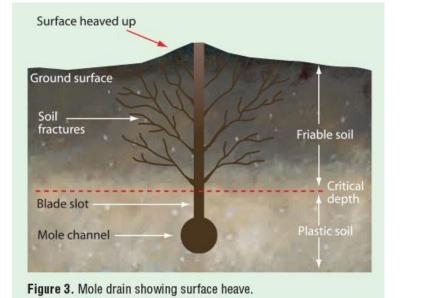
Backfilling groundwater drains

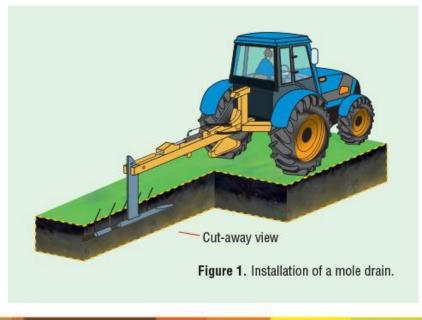
- Drainage stone should:
 - be filled to a **minimum depth of 30 cm** from the drain bottom
 - provide connectivity with layer of high permeability
 - be **clean** aggregate (10-40 mm / 0.4 -1.5 inch)

Shallow Drainage System


- Where no inflow of water to test pit
- NO permeable layer to be exploited
- Drainage must incorporate a soil disruption technique in tandem with collector drains.
- The aim of such a system is to improve soil structure and permeability

Shallow Drainage System


- A shallow drainage system is a network of field drains in tandem with surface disruption techniques which promote water infiltration and drainage
- Used where soil permeability is low at all depths and aims to introduce new pathways for water movement in the soil
- Methods include: Mole drainage, gravel mole drainage, sub-soiling (pan busting) and land forming



Mole Drainage

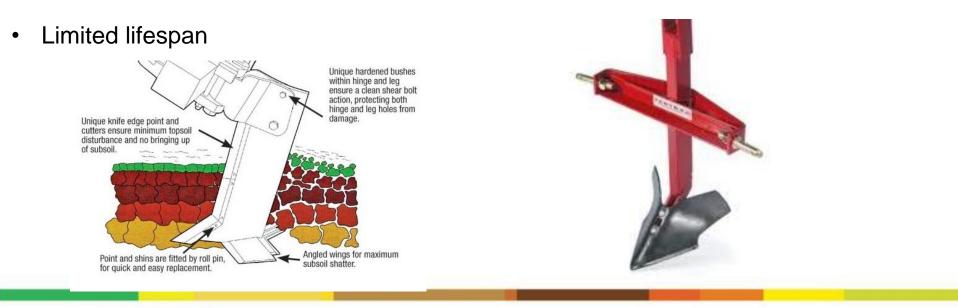
- Mole drainage comprises closely spaced (1-2 m) shallow unlined channels in cohesive high clay content, stone-free soils
- They are installed with a tractor mounted mole plough (adjustable depth to 60cm)
- The mole plough creates a channel and new pathways for water movement by fracturing and cracking the soil

Mole Drainage

Mole Drainage

- Mole foot creates a channel, expander finishes and solidifies channel walls
- Cracks radiate from tip of nose to the soil surface
- Surface water moves through these cracks and leg slot to mole channel
- Channels are tied in with collector drains at right angles

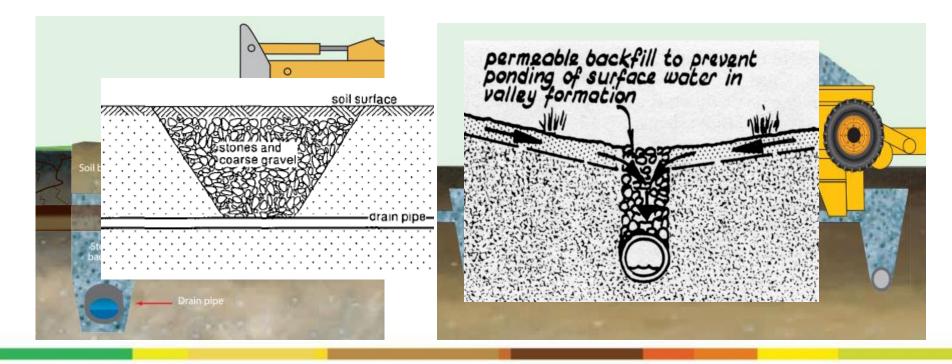
Gravel Mole Drainage


- Many soils require closely spaced drainage channels and soil loosening but cannot support unlined channels (texture, stone content etc.)
- Gravel mole drainage offers an alternative where the mole channel and leg slot are filled with gravel to provide stability
- They are installed with a tractor mounted gravel mole plough

Sub-soiling (Pan-busting)

- Closely related
 - Sub-soiling: Refers to general soil loosening
 - Pan-busting: Refers to the breaking of a distinct pan or cemented layer
- No attempt to from a stable channel, soil "shattering" is the main aim.
- Generally not effective unless a shallow impermeable layer is broken or used to supplement collector drains

Sub-soiling (Pan-busting)


The success of shallow systems!

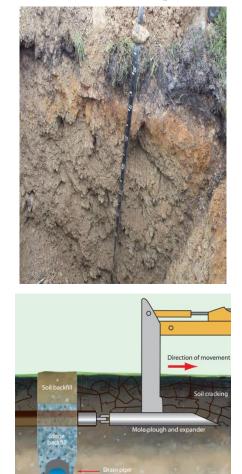
- Soil Type: Will mole drains survive? Will sub-soiling have a worthwhile effect? Etc.
- **Timing:** Level of cracking in soils will be dependent on moisture content (weather)
 - Cracking/Shattering and surface traction will be maximised in dry conditions
 - In wet conditions the desired shattering will be replaced my "smearing"
 - Cleaning open drains and installation of collectors can be done in advance and shallow techniques installed when the opportunity arises
- Equipment: Implements used must be in good order and fit for purpose
 - Must be able to reach the desired depth
 - And create the desired effect
 - Sufficient power and traction should be available to provide an even pull
- Capacity: Dependent on local rainfall
 - Capacity is improved by increasing disturbance (reducing spacing,+ subsoiling)
 - Reducing spacing of collector drains
 - Isolating the site from surrounding areas (open drains)

Backfilling collector drains

- Drainage stone should:
 - fill the trench to within 25 cm of ground surface
 - provide connectivity with mole channels and topsoil
 - be clean aggregate (10-40 mm / 0.4 -1.5 inch)

Drainage pipe and stone

- The drainage pipe facilitates a unobstructed flow path from the field drain.
- Only short drain lengths (less than 30 m) are capable of operating at full efficiency without a pipe. (also allows maintenance)
- Perforated corrugated pipe is the cheapest and most convenient
- Drainage stone has three functions
 - Hydraulic: to facilitate water flow to the pipe
 - Filter: to prevent the entry of fine particles to the pipe
 - Bedding: to provide support for the pipe and prevent collapse
- Stone backfill should be clean aggregate (5-40 mm)



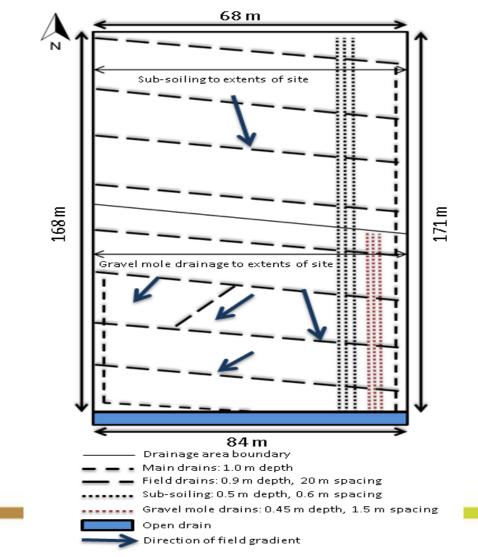
Land Drainage Design: Kishkeam Farm

Problem Diagnosis

Drainage system design

Drainage Costs: Kishkeam Farm

Costs	Total/ha
Drain installation @ €45/hr (36 hrs)	€1,625
Drainage pipe @ €1.03/m (566 m)	€585
Drainage stone @ €10.78/t (101 t)	€1,085
Subsoiling	€125
<u>Drainage cost</u>	<u>€3,420</u>


Land Drainage Design: Castleisland Farm

Problem Diagnosis

Drainage System Design

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

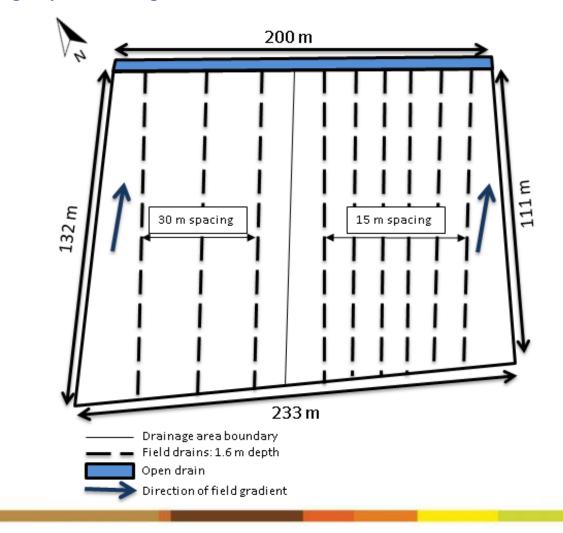
easasc

Drainage Costs: Castleisland Farm

Costs	Total/ha
Drain installation @ €45/hr (40 hrs)	€1,800
Drainage pipe @ €0.93/m (677 m)	€630
Drainage stone @ €12.30/t (193 t)	€2,378
Sub-soiling	€222
Gravel mole installation	€510
Gravel mole stone @ €24/t (100t)	€2,400
Drainage cost (Subsoiling)	<u>€5,030</u>
Drainage cost (Gravel moling)	<u>€7,940</u>

The Irish Agriculture and Food Development Authority

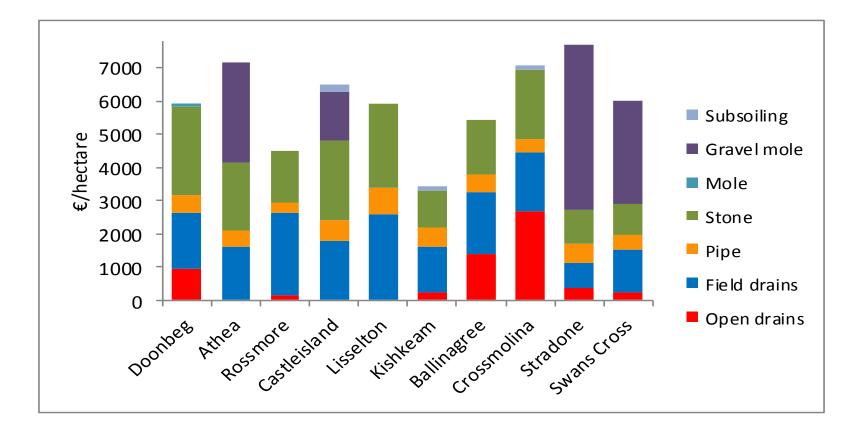
AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY


Land Drainage Design: Rossmore Farm

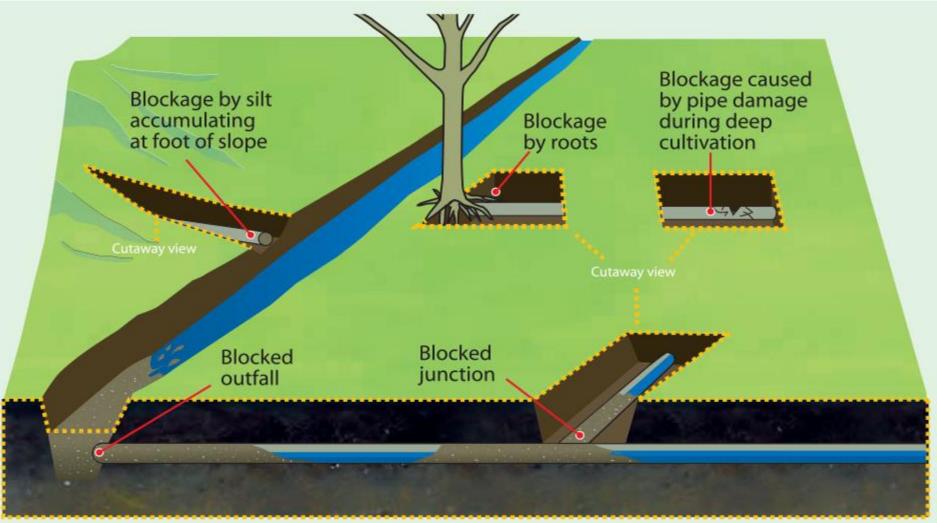
Problem Diagnosis

Drainage System Design

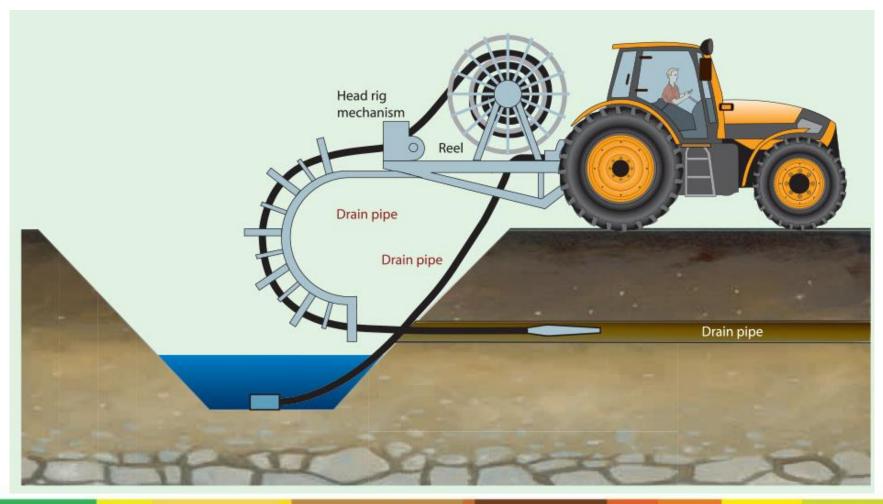
Drainage Costs: Rossmore Farm



Costs	Total/ha
Drain installation @ €45/hr (55 hrs)	€2,476
Drainage pipe @ €0.70/m (429 m)	€300
Drainage stone @ €11.10/t (141 t)	€1,562
Drainage cost	<u>€4,338</u>


Approximate costs

All costs included, high intensity systems. The average cost of drainage systems was €5,960/hectare (€3,420/ha to €7,690/ha)



Maintenance

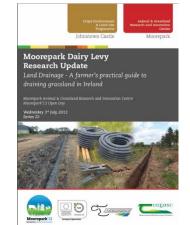
Maintenance

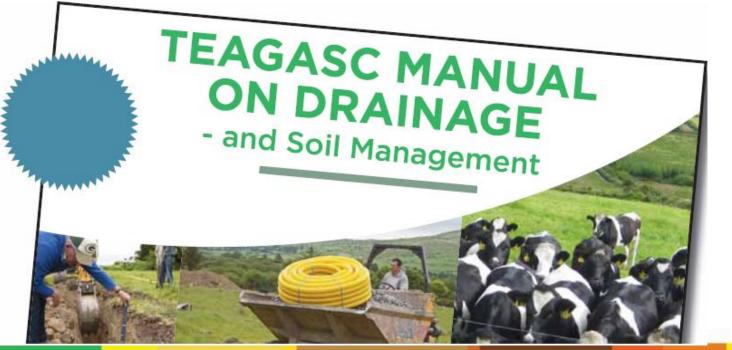
EIA Legislation

Land drainage works on lands used for agriculture is covered by the EIA (Agriculture) Regulations and is controlled by DAFM. Such drainage works include the following:

- Installing open drains
- Installing field drains (not open) such as field drains using plastic pipe with drainage stone or field drains with drainage stone only or mole drains (no pipe or drainage stone) or gravel filled mole drains (no pipe but filled with gravel)
- Opening of a short distance of watercourse

Subsoiling is not covered by the Regulations. Cleaning of open drains and adjacent levelling of spoil from such cleaning operations is also exempt.


http://www.agriculture.gov.ie



References

- Teagasc Land Drainage guidebook
- Heavy Soils Open Day booklets
- <u>https://www.teagasc.ie/crops/grassland/heavy-soils/</u>
- Teagasc Manual on Drainage and soil management

