

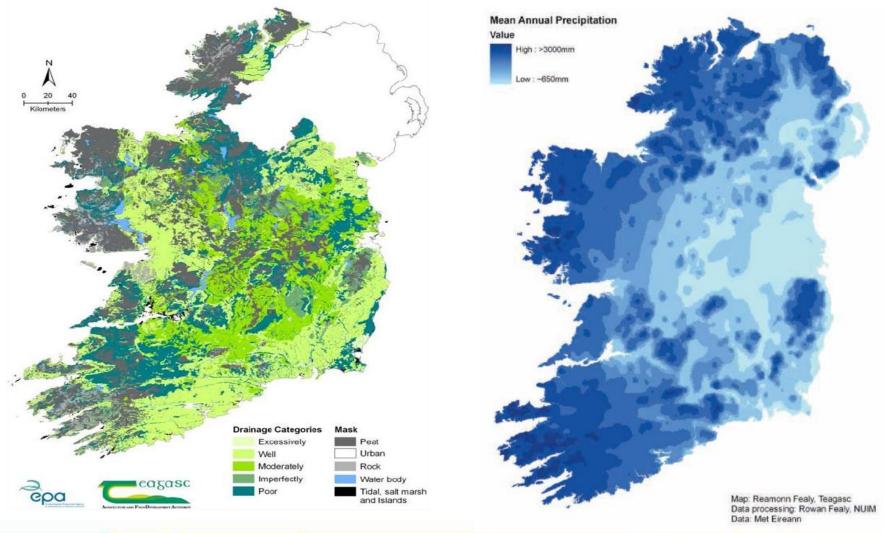
Heavy Soils Research Programme Land Drainage

Teagasc:

Teagasc Animal and Grassland Research and Innovation

OSMO Soil Health Project-University of Helsinki October 3rd/4th 2018

Irish Landscapes

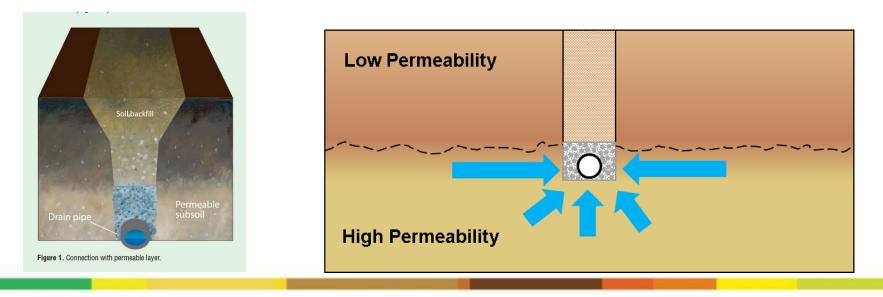


Irish Soils and Rainfall

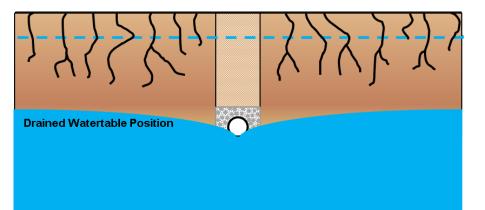
Irish Agriculture

- 90% of agricultural land area is grassland
- Marginal land occupies just under 50% of Irish land area (Gardiner & Radford, 1980)
- Poorly drained and prone to waterlogging
- Land drainage is required to reduce the volatility associated with rainfall

Types of drainage system

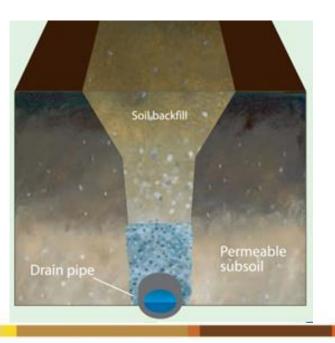

- The depth and type of drain to be installed depends entirely on the interpretation of the test pits.
- Two principle types are distinguished:
 - **Groundwater drainage system:** A network of deeply installed piped drains exploiting permeable layers
 - Shallow Drainage system: Where soil is heavy and infiltration of water is impeded at all depths and permeability needs to be improved

Groundwater Drainage System

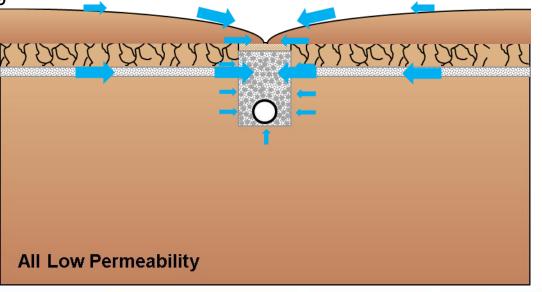

- A Groundwater drainage system is a network of field drains collecting groundwater which can move through soil layers of high permeability
- They work by exploiting the natural capacity for movement of water at a certain depth in certain soils
- Often heavy textured soils overlie soils of much higher permeability (poorer subsoils closer to the surface and more permeable layers underneath)

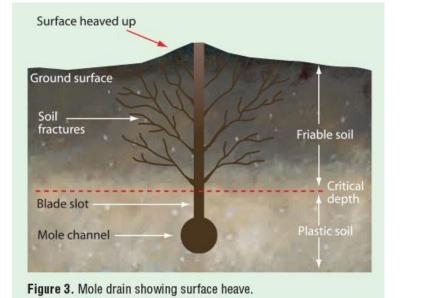
Groundwater Drainage System

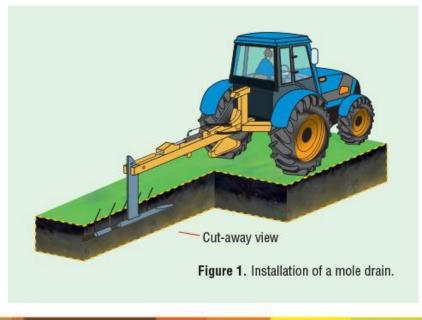
- By "tapping" into this natural capacity for water movement the system works by lowering the watertable and reducing the amount of water stored in the soil
- When it rains water can now infiltrate through the soil. Water storage is reduced so
 capacity is increased
- By controlling the water table, natural (cracking, root penetration) or artificial (subsoiling/ripping) improvements in permeability in the shallower layers can occur



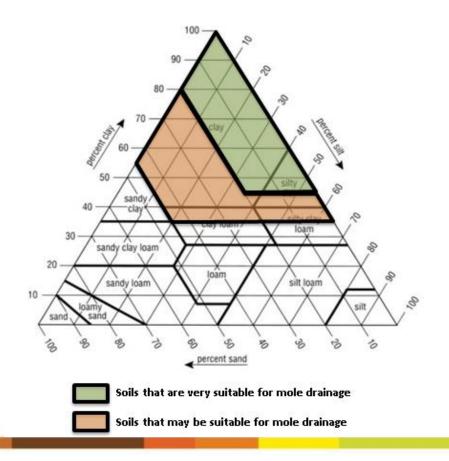
Backfilling groundwater drains

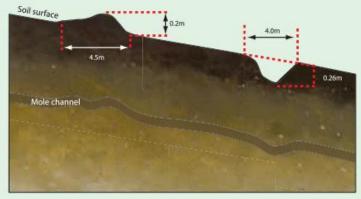

- Drainage stone should:
 - be filled to a **minimum depth of 30 cm** from the drain bottom
 - provide connectivity with layer of high permeability
 - be clean aggregate (10-40 mm / 0.4 -1.5 inch)


Shallow Drainage System


- A shallow drainage system is a network of field drains in tandem with surface disruption techniques which promote water infiltration and drainage
- Used where soil permeability is low at all depths and aims to introduce new pathways for water movement in the soil
- Methods include: Mole drainage, gravel mole drainage, sub-soiling (pan busting) and land forming

- Mole drainage comprises closely spaced (1-2 m) shallow unlined channels in cohesive high clay content, stone-free soils
- They are installed with a tractor mounted mole plough (adjustable depth to 60cm)
- The mole plough creates a channel and new pathways for water movement by fracturing and cracking the soil





- Soil Type suitability(at **<u>Targeted</u>** channel depth):
 - High Clay content (>35%)-"mouldable"
 - <u>NO</u> stones/gravels/sand pockets
 - Dry-ready to crack
 - Some questionable scenarios
 - No definitive test
 - Lifespan will vary (2-6 years)
 - Will need to be repeated

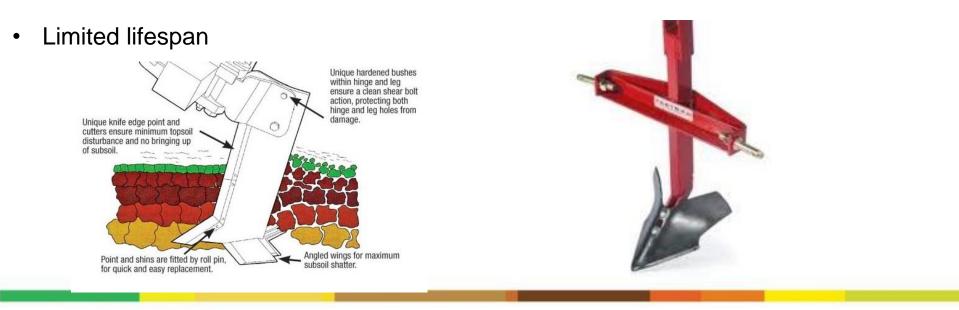
- Spacing 1-2 m apart to maximise cracking/disturbance
- Typically foot is 7-8 cm in diameter, expander is 8-10 cm in diameter
- **Depth targeted** typically 50-60 cm.
 - Staged approach may be required in very wet soils
- Mole **Up-hill** in direction of maximum fall
- Even gradient (Collector layout must provide outlets from all hollows/depressions)

(Not to scale)

Gravel Mole Drainage

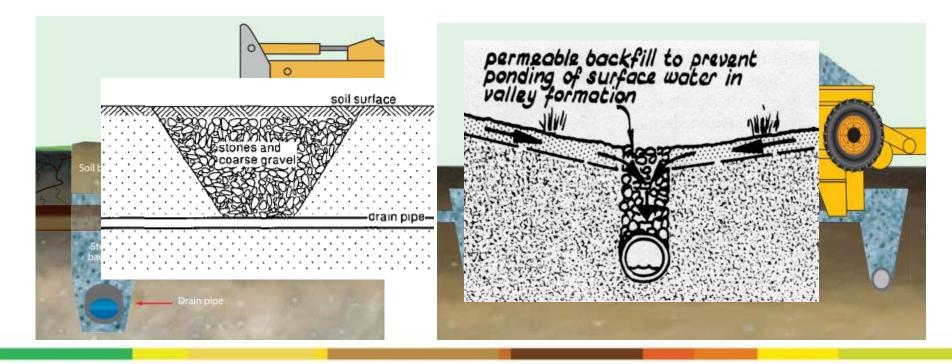
- Depth, gravel flow and height of gravel can be adjusted
- Typically gravel mole foot is 8 cm in diameter, chute is 8 cm wide
- Tend to be slighly wider spaced than mole channels- Approx. 1.5- 2.5 m (Cost!)
- Washed 10-20 mm gravel is used to ensure regular flow from hopper
- General principles of mole drainage installation apply here also

Gravel Mole Drainage


- Many soils require closely spaced drainage channels and soil loosening but cannot support unlined channels (texture, stone content etc.)
- Gravel mole drainage offers an alternative where the mole channel and leg slot are filled with gravel to provide stability
- They are installed with a tractor mounted gravel mole plough

Sub-soiling (Pan-busting)

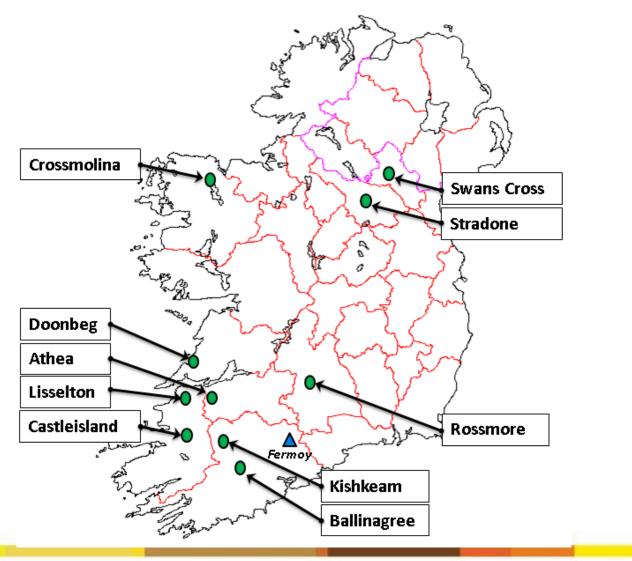
- Closely related
 - Sub-soiling: Refers to general soil loosening
 - Pan-busting: Refers to the breaking of a distinct pan or cemented layer
- No attempt to from a stable channel, soil "shattering" is the main aim.
- Generally not effective unless a shallow impermeable layer is broken or used to supplement collector drains


Sub-soiling (Pan-busting)

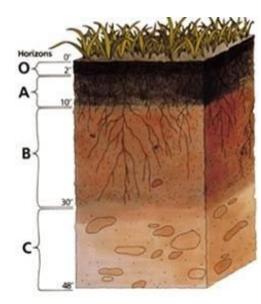
Backfilling collector drains

- Drainage stone should:
 - fill the trench to within 25 cm of ground surface
 - provide connectivity with mole channels and topsoil
 - be clean aggregate (10-40 mm / 0.4 -1.5 inch)

The success of shallow systems!


- Soil Type: Will mole drains survive? Will sub-soiling have a worthwhile effect? Etc.
- **Timing:** Level of cracking in soils will be dependent on moisture content (weather)
 - Cracking/Shattering and surface traction will be maximised in dry conditions
 - In wet conditions the desired shattering will be replaced my "smearing"
 - Cleaning open drains and installation of collectors can be done in advance and shallow techniques installed when the opportunity arises
- Equipment: Implements used must be in good order and fit for purpose
 - Must be able to reach the desired depth
 - And create the desired effect
 - Sufficient power and traction should be available to provide an even pull
- Capacity: Dependent on local rainfall
 - Capacity is improved by increasing disturbance (reducing spacing,+ subsoiling)
 - Reducing spacing of collector drains
 - Isolating the site from surrounding areas (open drains)

Heavy Soils Programme Farms



Drainage Investigations

- When planning a drainage system an investigation into the causes of poor drainage must first be undertaken
- No "one size fits all" solution
- A number of test pits (at least 2.5m deep) should be dug within the area to be drained
- As the test pits are dug the faces of the pits are observed
- Are there layers impeding or permitting water movement ?

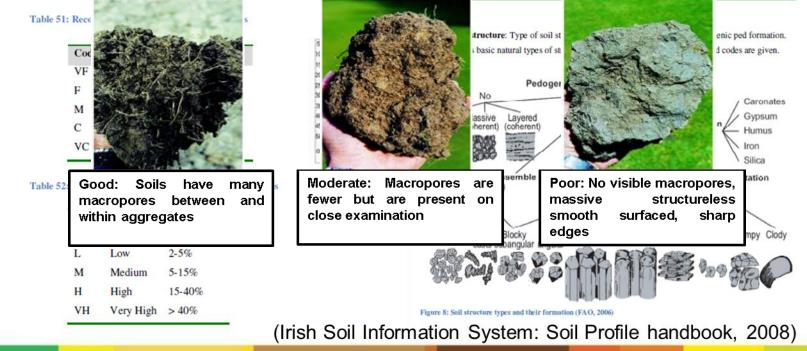
Indicators of permeability

٠

- Groundwater seepage: if present and approximate rate
 - Not the collection of surface water!

- Indicators of permeability
 - Brittleness/Collapse- often hand in hand with water seepage

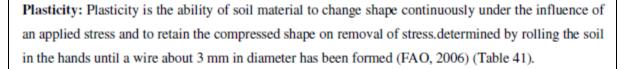
- Indicators of permeability
 - Pans (Iron, Manganese, Plough) or cemented layers
 - Soil Texture


- Indicators of permeability
 - Soil Porosity
 - Soil Structure

VOIDS (POROSITY): Voids include all space in the soil. Porosity φ is the fraction of the total soil volume that is taken up by the pore space.

Grade of structure: Describes the grade of development of the structure.

Table 35: Classification of the grade of structure


Code	Definition	Description
WE	Weak	Aggregates barely visible in situ and only weak arrangement of natural surfaces that break when gently disturbed.
WM	Weak to moderate	Show weak and moderate properties
MO	Moderate	Aggregates are visible in situ and there is a distinct arrangement of material.
		When disturbed it breaks into a mixture of entire and broken aggregates.
MS	Moderate to strong	Show moderate and strong properties
ST	Strong	Aggregates are clearly visible in situ and there is prominent arrangement of
		material. When disturbed it breaks into distinct whole aggregates.

- Indicators of permeability
 - Consistence •

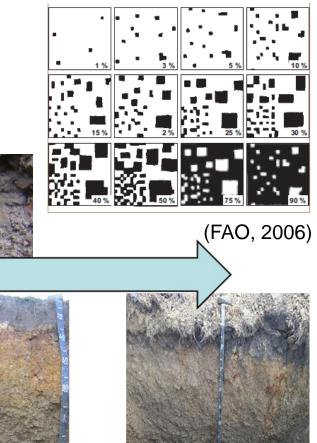
Code	Definition	Description
NST	Non-sticky	No soil material adheres to thumb and finger after release of pressure
SST	Slightly	Soil material adheres to thumb and finger after release of pressure, but it
	sticky	is easily removed.
ST	Sticky	Soil material adheres to thumb and finger after release of pressure, an
		tends to stretch and pull apart rather than coming away from each digit
VST	Very sticky	Soil material adheres strongly to thumb and finger after release of
		pressure, and stretches when fingers are separated

Table 41: Classification of soil plasticity

Code	Definition	Description
NPL	Non-plastic	No wire is formable
SPL	Slightly	Wire formable but breaks immediately if bent into a ring; deformation
	plastic	by slight force
PL	Plastic	Wire formable but breaks if bent into a ring; deformation by slight to
		moderate force
VPL	Very plastic	Wire formable and can be bent into a ring; deformation by moderately
		strong to strong force

If moist

If wet

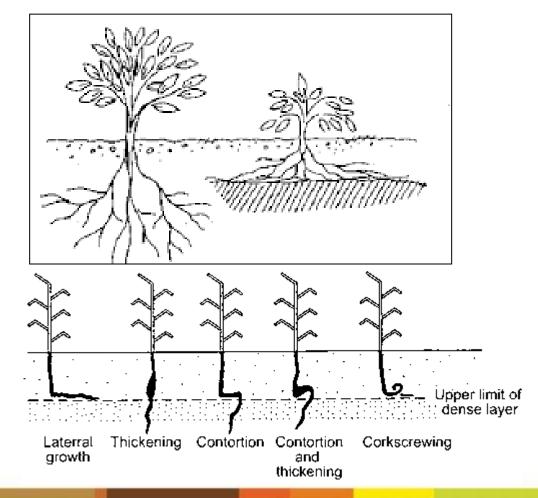


Plasticity/Stickiness

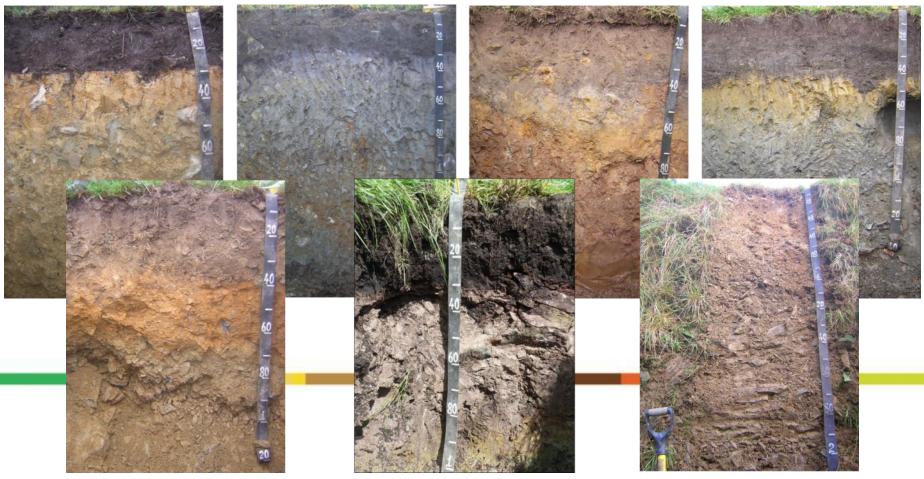
(Irish Soil Information System: Soil Profile handbook, 2008)

Increasing stone content

- Indicators of permeability
 - Stone content
 - Orientation



ACRECULTURE AND FOOD DEVELOPMENT AUTHORITY

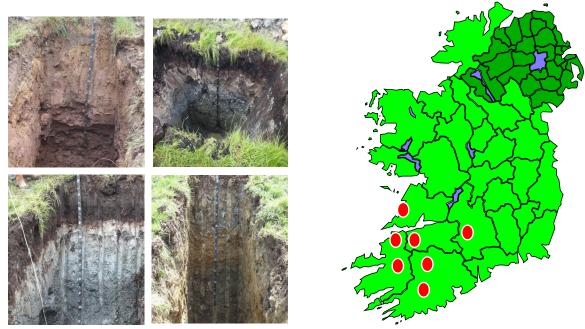

- Indicators of permeability
 - Rooting condition, orientation and depth

- Indicators of permeability
 - Colour- Main colour
 - Rich browns: good quality, little drainage issues
 - Greys/Blues: gleyed, heavy, water logged
 - Blacks: High organic matter
 - White/light: leached

Describing Soils-Guidelines

(Irish Soil Information System: Soil Profile handbook, 2008)

AGECULTURE AND FOOD DEVELOPMENT ALTINGUTY

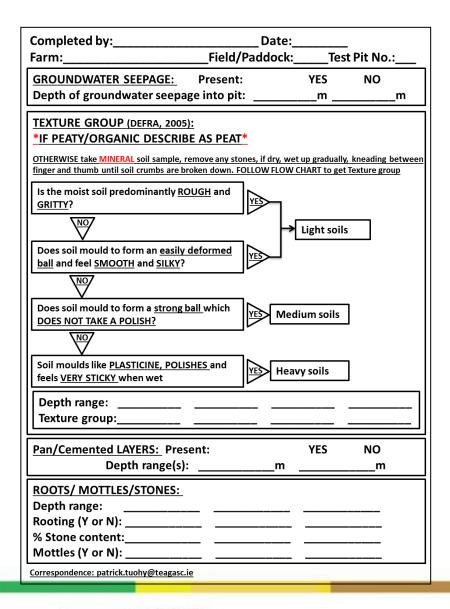

The Irish Agriculture and Food Development Authority

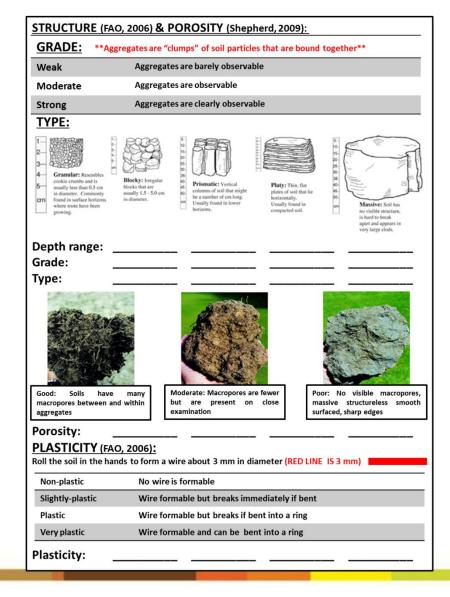
(FAO, 2006)

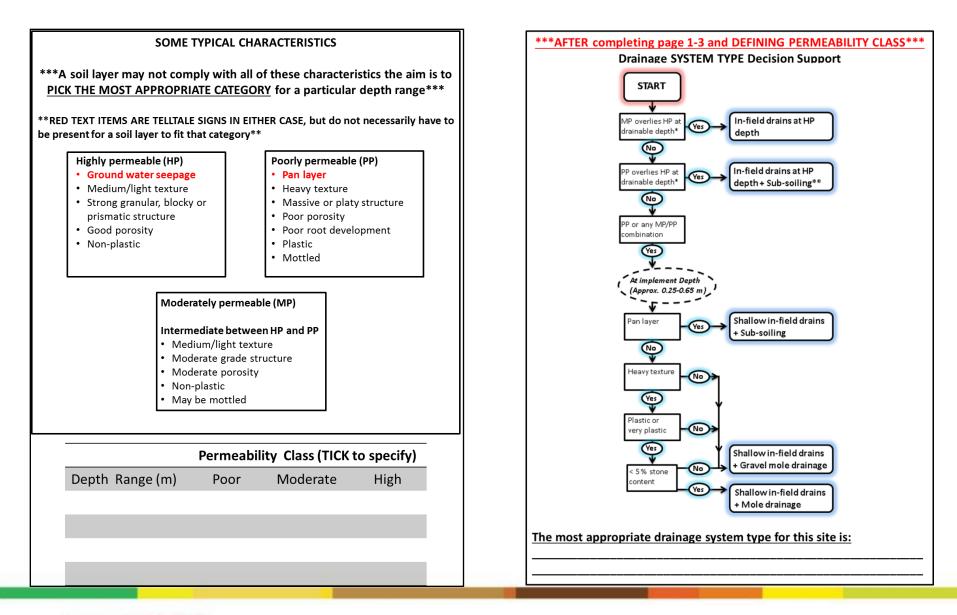
Visual drainage assessment design

Selected Indicators

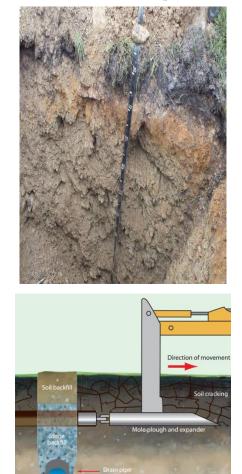
Water seepage Texture(sand, silt, clay) Pan layers Structure Porosity Consistence Stone content Colour/Mottling Root development

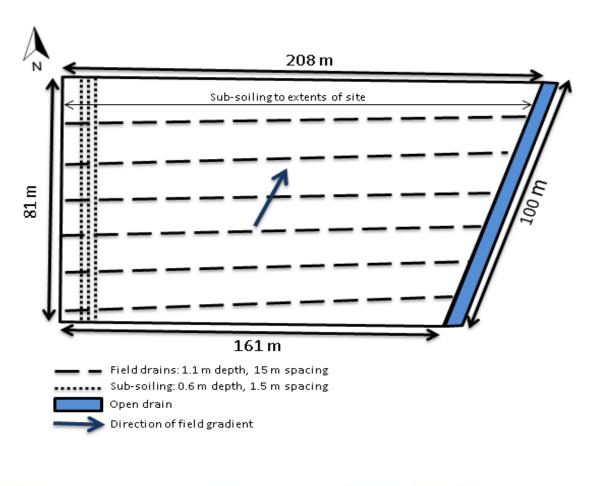

Using indicators in each soil profile


- Soil horizons were defined by distinctions between indicators
- Each horizon was classified as highly, moderately or poorly permeable
- A site-specific drainage design was prescribed based on these classifications


Scoring of Visual Indicators

Indicator	Classified by	Classified as	VDA Score	Weighting
Water seepage	Presence	 Water seepage evident 	1	A
		No seepage evident	0	
Pan layers	Presence	Present	-1	А
		Not present	0	
Texture	Hand textured (adapted from DEFRA 2005)	 Medium and light textured soils 	1	В
		Heavy textured soils	0	
Porosity	Poor, moderate or good (Shepherd 2009)	• Good	2	С
		Moderate	1	
		• Poor	0	
Consistence	Stickiness & plasticity (FAO 2006)	Non-sticky, non-plastic soils	2	С
		 Sticky <u>or</u> plastic soils 	1	
		Sticky and plastic soils	0	
Stone content	Abundance (FAO 2006)	Stone content > 15%	1	С
		• Stone content < 15%	0	
Root				
development	Presence	Present	1	С
CHIRDLAND ON A WAR APPRICATION AS		Not present	0	




					Mineral Fr	action			
Site	Soil type	Horizon	Depth (cm)	OM (%)	Sand (%)	Silt (%)	Clay (%)	Textural Class	Drainage System (Design type: GW or SH)
1	Surface	Apg	0-28	5.6	69	16	15	Sandy Loam	1.1: Field drains at 1.6 m depth, 30 m spacing
	Water Gley	Eg	29-50	0.4	88	8	4	Loamy Sand	(GW)
		С	51-90	0.8	59	27	14	Sandy Loam	1.2: Field drains at 1.6 m depth, 15 m spacing
		Cr	91-140	0.6	69	17	14	Sandy Loam	(GW)
2	Ombrotrophic	OA	0-40	68.8	-	-	-	-	2: Field drains at 1.7 m depth, 15 m spacing
	Peat	Of	41-85	89.5	-	-	-	-	(GW)
		Om	86-116	3.3	11	61	28	Silty Clay Loam	
		C1	117-141	-	-	-	-	-	
		C2	142-180	-	-	-	-	-	
3	Humic	AC	0-30	7.5	51	34	15	Loam	3: Field drains at 1.7 m depth, 20 m spacing
	Surface	BC	31-80	0.7	60	31	9	Sandy Loam	(GW)
	Water Gley	Cr	81-116	0.6	48	41	11	Loam	、 <i>`</i>
4	Humic Brown	Ар	0-25	11	15	49	36	Silty Clay Loam	4: Field drains at 1.1 m depth, 15 m spacing
	Podzolic	Bt	26-65	4.4	21	54	25	Silt Loam	supplemented by sub-soiling at 0.6 m depth,
	1 Guzono	Cr	66-110	2.3	39	40	21	Loam	1.5 m spacing (GW)
		R	111-220	-	-	-	-	-	
5	Groundwater	Apg	0-26	6.3	21	45	34	Clay Loam	5: Field drains at 0.9 m depth, 15 m spacing
	Gley	ley Btg	27-48	2.2	13	49	38	Silty Clay Loam	supplemented by mole drains at 0.6 m depth,
		Cg1	49-75	1	12	59	29	Silty Clay Loam	1.4 m spacing (SH)
		Cg2	76-140	0.9	23	50	27	Silt Loam	
6	Humic	Ap/O	0-40	59.6	40	26	34	Clay Loam	6: Field drains at 0.9 m depth, 20 m spacing
	Surface	Btg	41-62	4.5	7	51	42	Silty Clay	supplemented by gravel mole drains at 0.45 m
	Water Gley	Cg1	63-140	1.7	13	54	33	Silty Clay Loam	depth, 1.5 m spacing (SH)
		Cg2	141-170	0.9	22	55	23	Silt Loam	
	Stagnic	Ар	0-36	8.5	20	45	35	Silty Clay Loam	7.1: Field drains at 0.9 m depth, 20 m spacing
7	Luvisol								supplemented by sub-soiling at 0.5 m depth, 0.6 m spacing (SH)
		BCtg	37-100	1.1	20	50	30	Silty Clay Loam	7.2: Field drains at 0.9 m depth, 20 m spacing supplemented by sub-soiling at 0.5 m depth,
		Cr	101-190	1.4	34	41	25	Loam	0.6 m spacing and gravel mole drains at 0.45 m depth, 1.5 m spacing (SH)

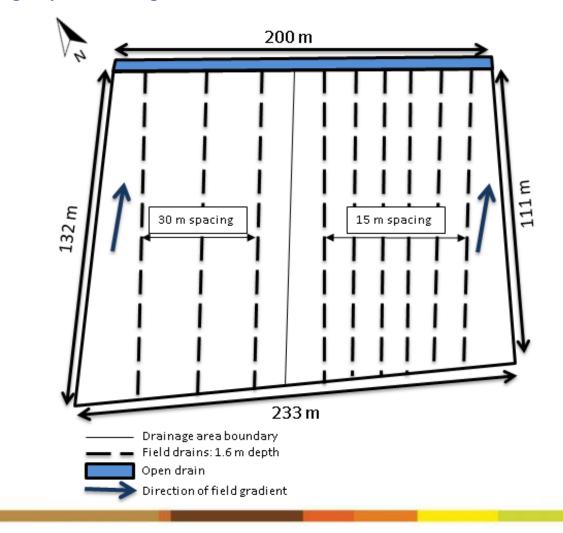
Land Drainage Design: Kishkeam Farm

Problem Diagnosis

Drainage system design

Drainage Costs: Kishkeam Farm

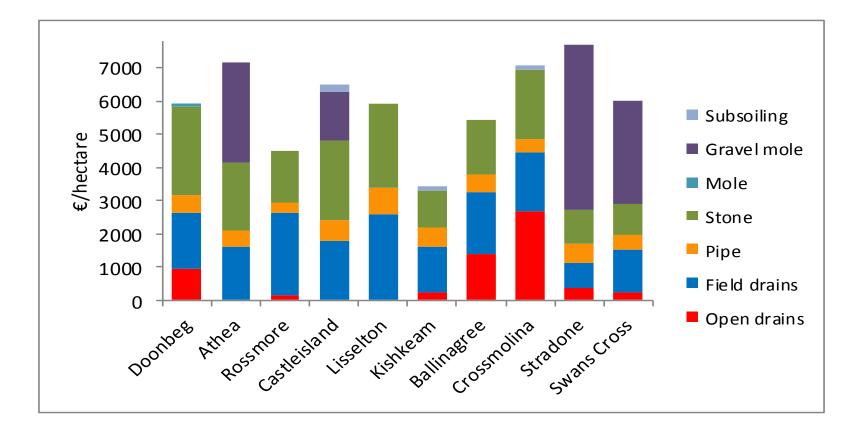
Costs T	otal/ha
Drain installation @ €45/hr (36 hrs)	€1,625
Drainage pipe @ €1.03/m (566 m)	€585
Drainage stone @ €10.78/t (101 t)	€1,085
Subsoiling	€125
<u>Drainage cost</u>	<u>€3,420</u>


Land Drainage Design: Rossmore Farm

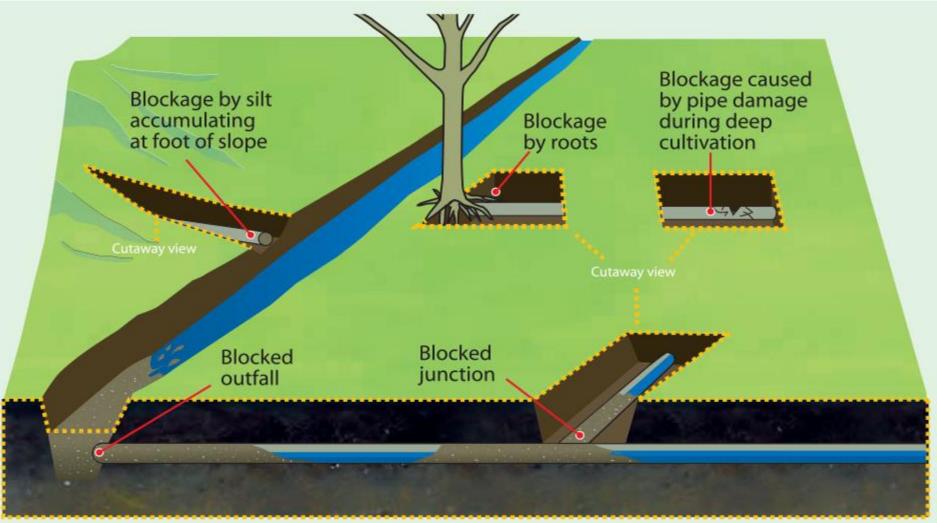
Problem Diagnosis

Drainage System Design

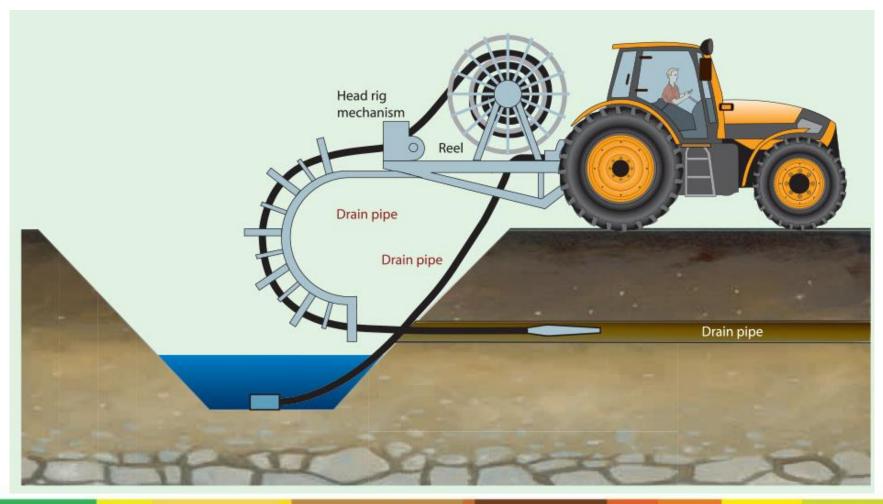
Drainage Costs: Rossmore Farm



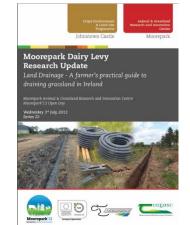
Costs	Total/ha
Drain installation @ €45/hr (55 hrs)	€2,476
Drainage pipe @ €0.70/m (429 m)	€300
Drainage stone @ €11.10/t (141 t)	€1,562
Drainage cost	<u>€4,338</u>

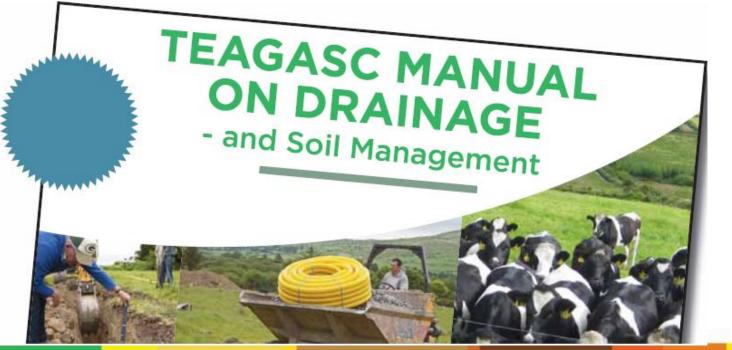

Approximate costs

All costs included, high intensity systems. The average cost of drainage systems was €5,960/hectare (€3,420/ha to €7,690/ha)



Maintenance


Maintenance



References

- Teagasc Land Drainage guidebook
- Heavy Soils Open Day booklets
- <u>https://www.teagasc.ie/crops/grassland/heavy-soils/</u>
- Teagasc Manual on Drainage and soil management

