Agriculture & LULUCF Research Overview: Emissions and Mitigation

Karl Richards, Gary Lanigan, Laurence Shalloo and Kevin Hanrahan

Presentation Outline

- Outline of farmer demographics/social sciences
- Emissions Overview
- Teagasc Climate Centre
- Teagasc Climate Centre research
- Inventory Refinement Science
- Mitigation Science
- Summary

Farming Demographics & Income Performance

Income € per ha (Average 2017-2022)

Agricultural Emissions

• Emissions Share

TEAGASC

- Methane (CH₄) c. 74%
- Nitrous oxide (N₂O) 22%
- CO₂ emission c. 3% (liming & urea)
- Currently modelling for CCAC
 - Projected emissions 2030-50
 - Potential Mitigation 2030-50

LULUCF Emissions

- Latest EPA inventory (2024)
- Wetlands 3.8 Mt CO₂e
- Grasslands 2.5 Mt CO₂e
- Forestry/wood products -2.4 MT CO₂e
- Sectoral emissions growing since 2018
- Frequent inventory revisions
- Update LULUCF Projections to 2050

Teagasc Climate Strategy

Teagasc Climate Centre

ABRICULTORE AND FOUR DEVELOPMENT ACTIONITY

Modelling Pathways towards Net Zero

- Extending FAPRI modelling to project agricultural activity to 2050
- Extend BAU LULUCF emissions using process-based modelling
- Model future agricultural mitigation potential & adoption rates
- Model future LULUCF & land-based mitigation to 2050

New feed additives (housing period)	 Animal breeding New feed additives (Grazing period) 	Management of organ mineral soils	10-
Low/No N fertiliser systems Removals and emissions from 2nd rotation forestr Cropland management Plasma-enhanced manure Combined LESS/acidification to	Mineral soil management Alternatives aft Biochar Optimal hedgerow spe Use of trees for ammonia and nitrate	Enha er peat soils Micro-aeration ecies mixes	anced weathering Biological Nitrification Inhibition Accelerated breeding to enhance N uptake and Primary Production
reduce ammonia 0-5 years Time to I	mplementation 5-10 years	+10 years	→ →

Inventory Refinement Research

Methane (16.7 MTCO₂e 65%)

- Cattle and Sheep
- Grazing
 - Grassland Management
- Grass silage
- Alternative forages
- Manure: volume/timing, housing/storage EF

J. Dairy Sci. 107:383–397 https://doi.org/10.3168/jds.2022-22646

© 2024, The Authors. Published by Elsevier Inc. and Fass Inc. on behalf of the American Dairy Science Association[®]. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Evaluating enteric methane emissions within a herd of genetically divergent grazing dairy cows

B. Lahart,¹* © F. Buckley,^{1,2} J. Herron,¹ © R. Fitzgerald,¹ E. Fitzpatrick,¹ N. Galvin,¹ and L. Shalloo¹ © ¹Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland P61 P302 ²School of Biological Earth and Environmental Science, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 K8AF

Mar Apr May Jun Jul Aug Sep Oct

---Calculated methane Measure methane Inventory Model calculation 285g/day High quality Low quality S.E ltem Treat **Bodyweight (kg)** 630 606 13.66 0.195 0.897 **BCS (1-5)** 3.36 3.35 0.064 DMI (kg/DM/cow) 12.78 8.93 0.598 0.001 0.001 CH_4 (g/day) 254 213 7.123 CH₄ (g/kg DMI) 21 26 .217 0.008 leagase

ABBICULTURE AND FOUR DEVELOPMENT ALTERNET

Enteric Methane Emission Factor

-TA

TEAGASC

Study	Method	Emission factor
Wims et al. 2010	SF6	6.4
O'Neill et al., 2011	SF6	5.7
Ferris et al., 2020	SF6	4.9
Hynes et al., 2016	Chamber	5.6
Lahart et al., 2023	GreenFeed	5.2
Starsmore et al., 2023	GreenFeed	6.1
Jiao et al., 2014	SF6	5.6
Foley et al., 2008	SF6	6.3
Lovett et al 2005	SF6	5.6
Hidalgo et al 2014	SF6	6.8

Beef Methane Inventory Refinement

Main drivers of differences:

- Better characterisation of lifetime diet/diet changes across systems
- National concentrate consumption captured more effectively via substitution rates
- Update of methane Ym & prediction equations
- More effective capture of animal performance (lifetime growth, carcass, age slaughter)

Nitrous Oxide (5 MTCO₂e 22.3%)

- Fertiliser type
- Manure/Digestate
- $NH_3/N_2O Digestate$
- Peat drainage
- Soil type (peat/mineral)
- Tier 3 fertiliser model

	75		Default EF%	Irish EF %	EF range %		
	70	GRASSLAND FERTILISER					
Agricultural Soils Emissions Kt CO ₂ equivalent	70	CAN	1	1.49	2.74 – 0.87		
	05	Urea	1	0.25	0.40 - 0.18		
	65	Urea+NBPT	1	0.40	0.21 – 0.69		
		SPRING BARLEY FERTILISER					
	60	CAN	1	0.42	0.35 – 0.49		
		Urea	1	0.29	0.27 – 0.31		
	55	Urea+NBPT	1	0.22	0.20 – 0.23		
		GRASSLAND ANIMAL DUNG/URINE					
	50	Dung	2	0.31	0.02 - 1.48		
		Urine	2	1.18	0.31 - 4.81		
		Old Emission F	actors —New Em	nission Factors	T		
873			WAY DE N	9 70'			
57 57	68			A.	ADDRELLETORE AND FLOW DEVELOPMENT ALTERNET		

Carbon Dioxide (Ag. 0.75 & Grass 2.5Mt CO₂eq)

- Liming EF
- Soil Type
 - Emissions factors
 - improved mapping
- Land-use
 - Grassland on Mineral Soils
 - Cropland
 - Hedgerows
- Refine land management factors
 - Grassland: forage type, grazing intensity
 - Tillage: cover crops, Manure & Straw Incorporation
- Tier 3 model development

National Agricultural Soil Carbon Observatory

• Inventory highly uncertain

VistaMil

- Need to produce national emission factors
- Monitor long-term changes in soil carbon stocks
- 28 carbon towers management, land-use, soil type and climate impacts
- Tier 3 model: measurements, biogeochemical models and satellite data

Agricultural Peat Soils

- Peat soils store 15-30% C globally
- Peat covers 21% Ireland
- Grassland peat soils emit ~7.1 2.5 MTCO₂eq
- Research underway to refine:
 - Area of peat soils

TEAGASC

- Drainage and nutrient status of peat soils
- Emission factor peat types & mitigation
- Raising the water table reduces emissions

Inventory Refinement Impact LULUCF 1990-2021

agasa

Association and Food Development Automaty

- Grasslands -52.8% (2. 5 MTCO₂e)
- Wetlands +87.9% (3.8 MT CO₂e)
- Future research soil type x land-use x management

Mitigation Research

Agricultural Mitigation 2030 - MACC

Methane Mitigation

- Genetic selection for low methane/N excretion
- Reduce Age of Finishing
- Feed supplements

VistaMilk

- Red seaweeds CH₄ -80%
- Linseed oil CH_4 -19%
- Rapeseed cake/oil CH₄ -8%
- Brown seaweed extract CH₄ -7to -9%
- Manure additives CH₄ -96%

Feed Additives Beef

• **3-NOP**¹

- TMR diet (50:50 F:C)
- $30\% \downarrow CH_{4} g/d$
- No effects on feed intake, digestibility, performance
- Calcium peroxide
 - \downarrow CH₄ -28% (housed) -20% (grazing)
 - Potential effects on intake/digestability
 - Optimisation: delivery & slow release of O_2

Animal

Twice daily supplementation of CaO2 over a 24 h period (Indoors)

Feed Additives Dairy

3-NOP Pulse Fed to Grazing Dairy Cows¹

3-NOP in Lactating Dairy Cows

20

- Practicality
- Slow release mechanisms
- Cost
- Residues
- Life cycle assessment

Feed Additives

Nitrous Oxide Mitigation - 1

- Soil Fertility
 - Optimal soil P -42%
 - Optimal soil pH -38%
- Multispecies swards (MSS) fertiliser reduction
- Nitrification inhibition biological & chemical
- New low emission/organic fertilisers
- Precision grazing
- Low to no nitrogen integrated farming systems

Gebremichael et al. 2022. Scientific Reports, 12, p.2602.

Nitrous Oxide Mitigation - 2

- Soil Fertility
 - Optimal soil P -42%
 - Optimal soil pH -38%
- Multispecies swards (MSS) fertiliser reduction
- Nitrification inhibition biological & chemical
- New low emission/organic fertilisers
- Precision grazing
- Low to no nitrogen integrated farming systems

LULUCF 2030 – MACC

Carbon Dioxide Mitigation

- Multispecies swards/clover
- Improved soil fertility
- Integrated farming systems
- Forestry- type, management, attitudes, peat soils, 2nd rotation, adaptation
- Peat soil water table management
- Low input peat and peaty-mineral soils
- Biochar, Enhanced weathering

Other Research Areas

- Social and behavioral sciences
 - barriers to practice change
 - Socio-Economic consequences of system changes
- Monitoring, reporting and verification
- Impact of climate change
 - Emissions
 - Market opportunities
- Land-use optimization
- Protecting soil C (Land-use change)

Adoption - Knowledge Transfer

- Signpost demonstration farms (125)
 - Demonstration of mitigation practice
 - Farmers share experiences
 - Track progress
 - Signpost farms as "living labs"
- Signpost Advisory programme
 - Free advise to farmers
 - 10,000 farmers per year
- AgNav
 - Decision Support tool: C emissions calc. & GHG reduction plan
- Carbon farming economic signals to reduce emissions

Summary/Take home Messages

- Considerable ongoing research CH₄, N₂O and CO₂
- New mitigation measures in development
- Barriers measure cost/acceptability
- Research moving towards Tier 3 inventory modelling
- Importance of Knowledge Transfer

TEAGASC

- Signpost demonstration farms
- Signpost advisors, AgNav (carbon sequestration)
- Farmer/Landowner Attitudes and Behaviour
 - Address demographic challenges
 - Acceptability of mitigation options

Acknowledgements

- D. Krol, R. Murphy, G. Bondi, T. Donnellan(Teagasc), M. Saunders (T.C.D.), P. Murphy (U.C.D.), R. Fealy & T. McCarthy (Maynooth Uni.), S. Waters, V. O'Flaherty (University of Galway)
- This research was financially supported a wide range of funders and their support is gratefully acknowledged

