

Teagasc MACC 2023

An Updated Analysis of the Greenhouse Gas Abatement Potential of the Irish Agriculture and Land-Use Sectors between 2021 and 2030

Gary Lanigan¹, Kevin Black², Trevor Donnellan¹, Paul Crosson¹, Ciara Beausang¹, Kevin Hanrahan¹, Cathal Buckley¹, Ben Lahart¹, Jonathan Herron¹, John Redmond³, Laurence Shalloo¹, Dominika Krol¹, Patrick Forrestal¹, Niall Farrelly¹, Donal O'Brien¹, J.J. Lenehan¹, Michael Hennessy¹, Michael O'Donovan¹, David Wall¹, Lilian O'Sullivan¹, Tom O'Dwyer¹, Mike Dineen¹, Sinead Waters¹, Nuala NiFlahartha¹, Pat Murphy¹, John Spink¹, Pat Dillon¹, John Upton¹, Karl Richards¹

What is a MACC & why do we need a one?

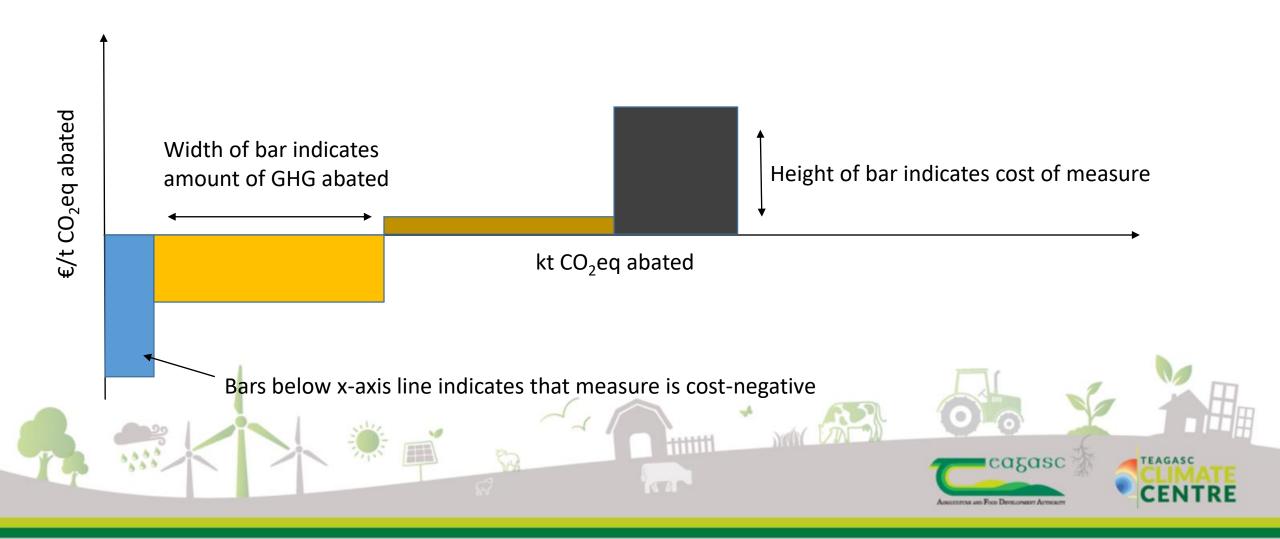
- A MACC sets out, in a visual way, the set of mitigation options
- It ranks them from least to most expensive easy to see how much mitigation each option will deliver
- Last MACC in 2018, new science since, and policy has changed
- Separate MACC for Agriculture, and also for the LULUCF (Land-Use, Land-use change and Forestry) and Bioenergy sectors

Key Considerations

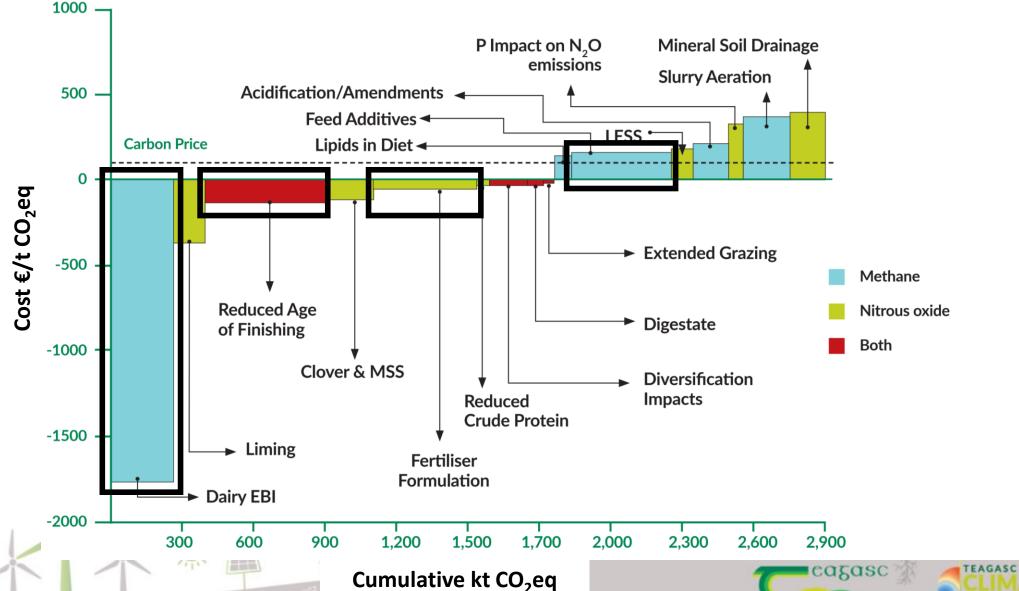
- Agriculture MACC(s)
 - Three Activity Scenarios S1 (used by EPA), S2 & S3 used for agriculture
 - Two Mitigation Uptake Pathways Pathway 1 and Pathway 2
 - Different speed of uptake for different measures
 - Separated out efficiency measures reduce C footprint but not absolute emissions
 - Animal Health, Genetics and Extended Grazing also are enablers for other measures
- LULUCF and Energy
 - One Scenario for each

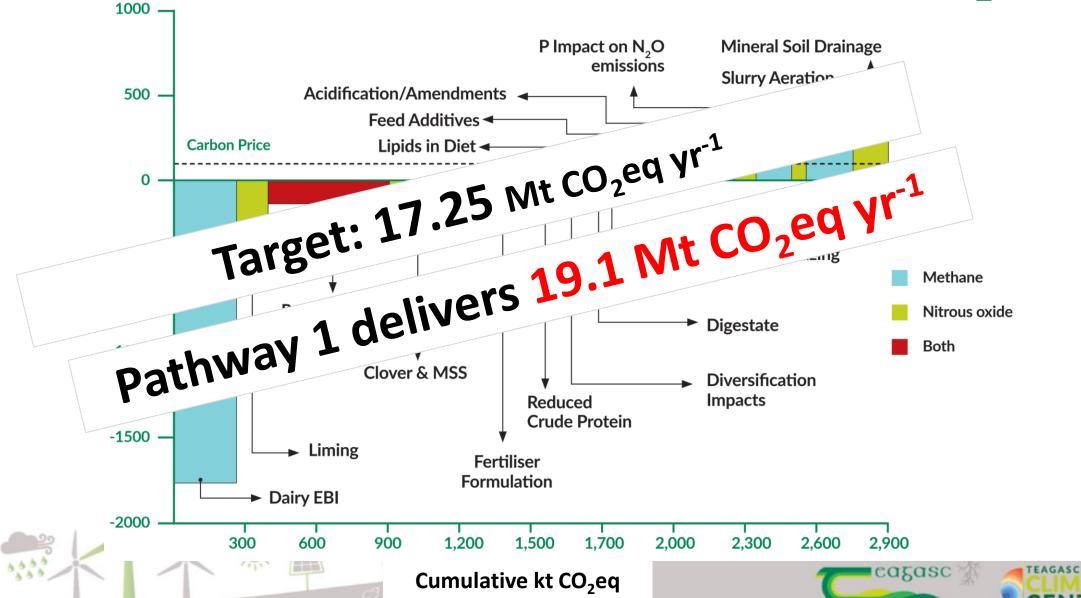
Agricultural Activity Scenarios in 2030

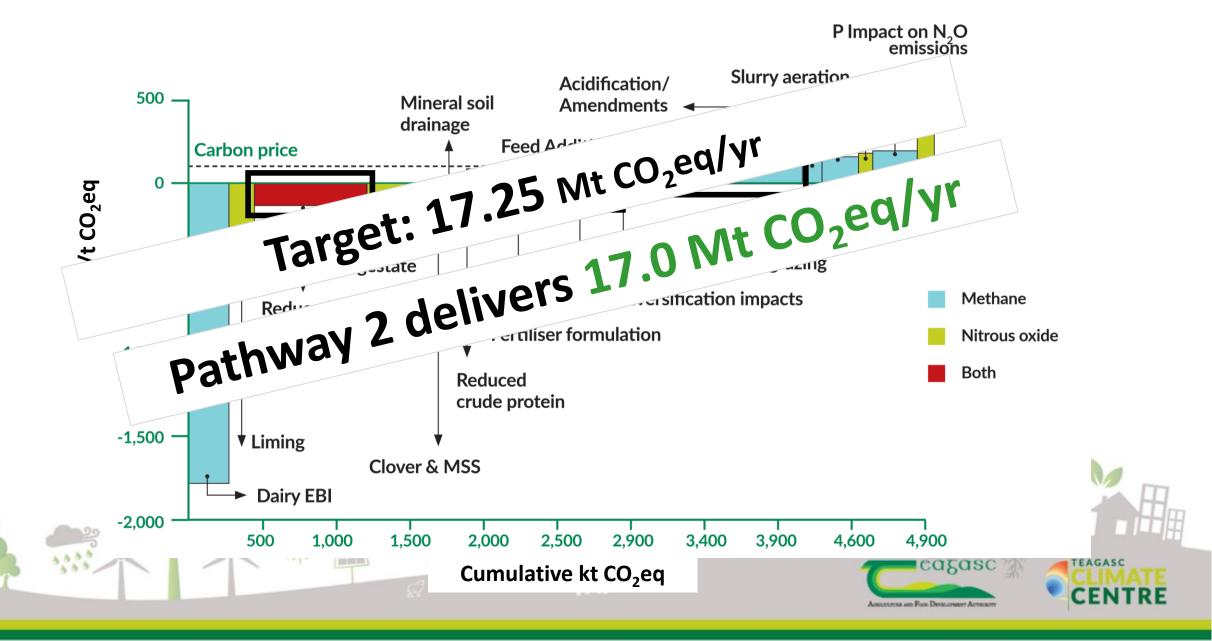
2030 Projected Activity Data and Emissions


	2022 '000 head	Scenario 1 '000 head	Scenario 2 '000 head	Scenario 3 '000 head
Total Cattle	7,132	6,785	6,541	7,015
Dairy Cows	1,568	1,692	1,627	1,756
Suckler Cows	887	632	504	748
Total Sheep	5,223	4,656	4,664	4,649
Total Pigs	1,676	1,629	1,629	1,630
Total Poultry	19,765	20,911	20,912	20,910
Total Mineral N Fertiliser (tonnes N)	343,200	399,156	369,806	420,989
Total GHG emissions (Mt CO ₂ eq)		21.9	21.1	22.8

Animal Inventories align with the activity level used in the EPA Agriculture GHG inventory – see Ireland's Informative Inventory Report 2023 (EPA, 2023)




How to Read a MACC


Agriculture MACC – Pathway 1 = 2820 kt CO₂eq/yr

Agriculture MACC – Pathway 1 = 2820 kt CO₂eq/yr

Agriculture MACC – Pathway 2 = 4,858 kt CO₂eq/yr

Can agriculture meet its targets?

		Emissions in 2030 after mitigation	Carbon Budget Cumulative Emissions 2030	Cumulative Emissions Reductions 2021-2030
		Mt CO ₂ eq/yr	Mt CO ₂ eq	Mt CO ₂ eq
Carbon Budget Targets		17.25	202.0	
Scenario 1	Pathway 1	19.10	206.8	13.1
Scenario 2	Pathway 1	18.40	203.6	12.7
Scenario 3	Pathway 1	19.70	210.2	13.5
Scenario 1	Pathway 2	17.00	198.9	21,1
Scenario 2	Pathway 2	16.40	196.1	20.3
Scenario 3	Pathway 2	17.70	202.2	21.7

The 2018 baseline used for agriculture is 23 Mt CO₂eq/yr

Can agriculture meet its targets?

		Emissions in 2030 after mitigation Mt CO ₂ eq/yr	Carbon Budget Cumulative Emissions 2030 Mt CO ₂ eq	Cumulative Emissions Reductions 2021-2030 Mt CO ₂ eq
Carbon Budget Targets		17.25	202.0	
Scenario 1	Pathway 2	17.00	198.9	21,1
Scenario 2	Pathway 2	16.40	196.1	20.3

The 2018 baseline used for agriculture is 23 Mt CO₂eq/yr

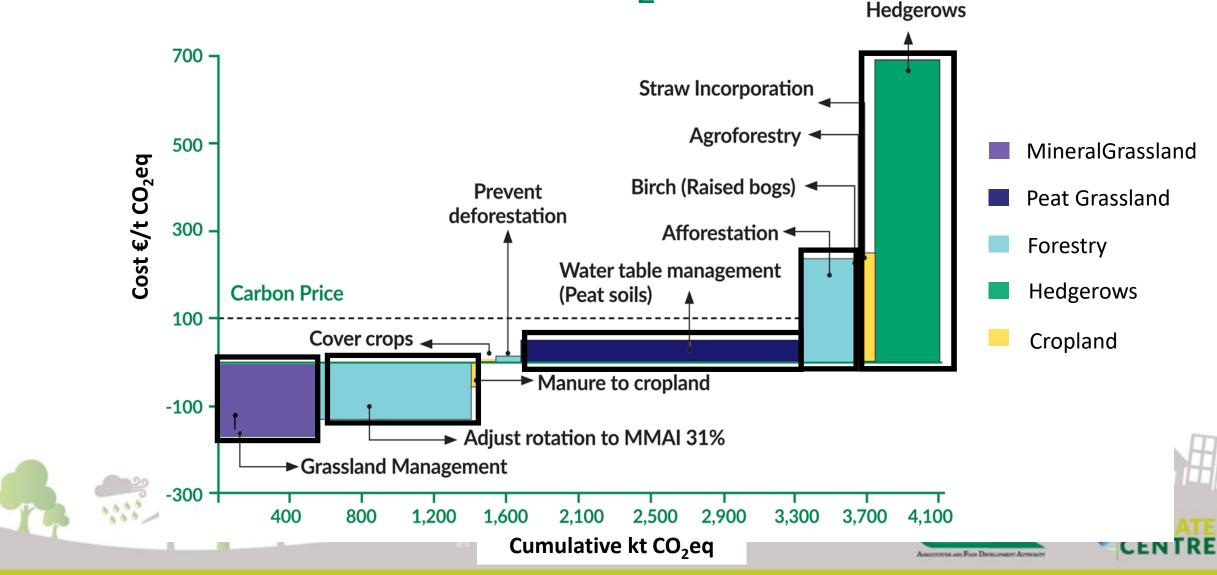
Uptake Rates of Measures – 80% of Total Mitigation

M	ea	SU	ire

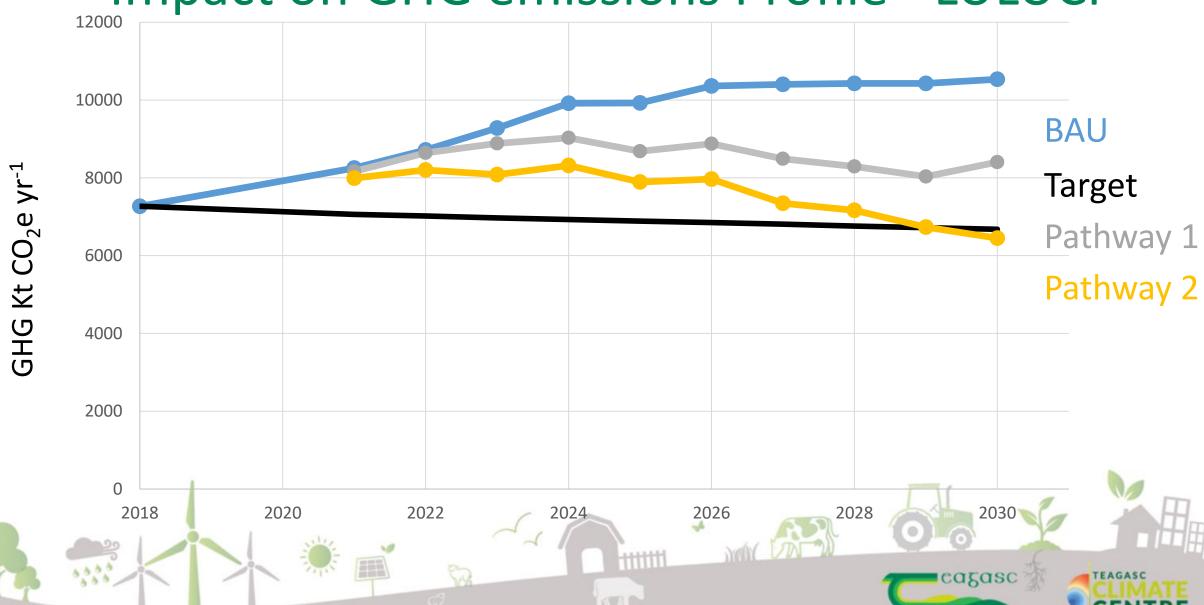
N-reducing measures (liming, legumes, LESS)

Fertiliser Formulation (Protected Urea, low-N compounds)

Reduced Age of Finishing


Feed Additives

Diversification Impacts (Destocking & Use of Digestate)

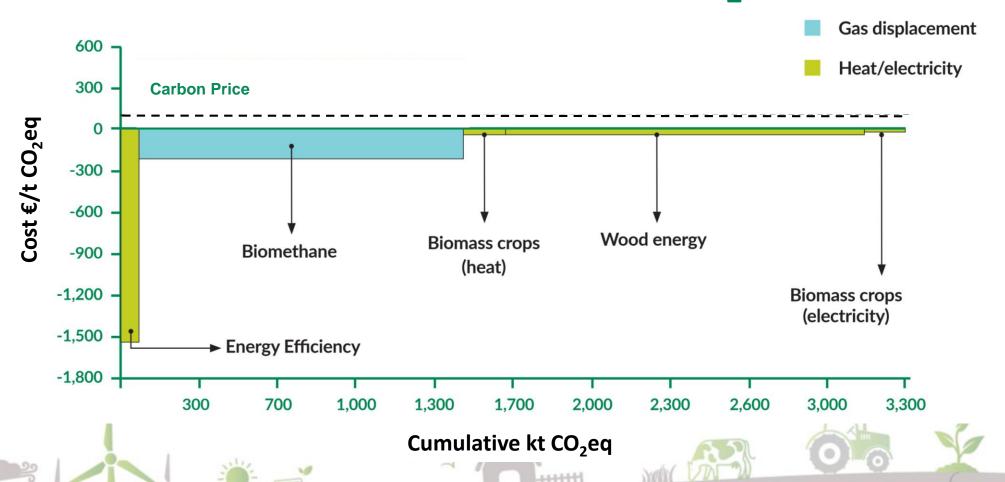

Manure Management

Pathway 2	Description of mitigation measure
30% (285, 757 tonnes N by 2030)	Reduction in total N
100% 95% 65%	Straight urea to protected urea CAN to protected urea Nitrate-based to ammonium-based compounds
3 months	Reduction in the age of finishing both suckler and dairy beef
50% 65%	Feed additive to dairy cows during grazing Feed additive to cattle during housing
137,963 LU 3,500,000 m ³	Displacement of animal numbers Volume of digestate
40% dairy 20% other	Slurry aeration or acidification

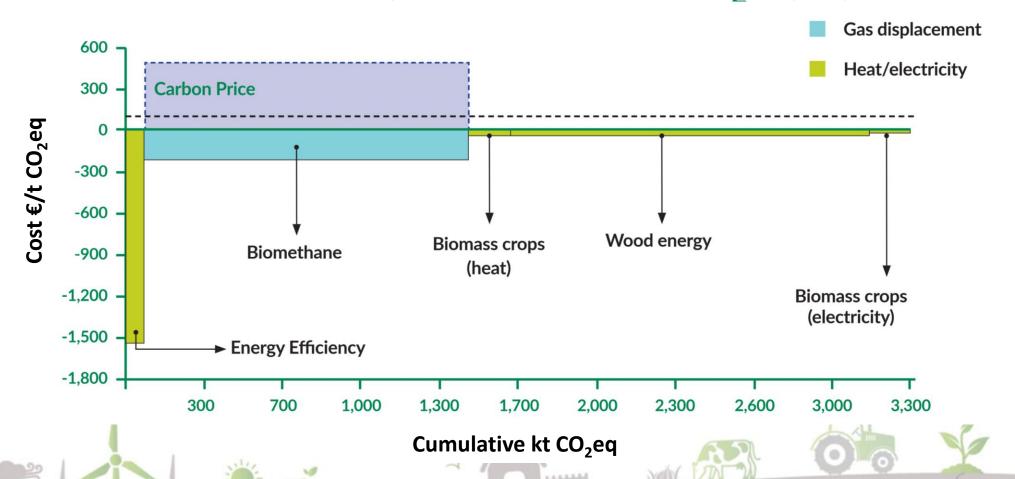
LULUCF P1 = $2,267 \text{ kt CO}_2\text{eq/yr by } 2030 \text{ P2} = 4,110 \text{ kt CO}_2\text{eq/yr by } 2030 \text{ P3}$

Impact on GHG emissions Profile - LULUCF

LULUCF


Measure	Pathway 1	Pathway 2	Description of mitigation measure
Forestry	21% MMAI 8000ha by 2030 495 ha p.a. 1 kha	31% MMAI 8000ha by 2030 495 ha p.a. 2 kha	Extend rotation age Afforestation Prevent deforestation Agroforestry
Grassland management	505 kha	750 kha	Optimize soil nutrition and grazing intensity
Water table management	40 kha	80 kha	Raise water table on peat soils
Hedgerows	20,000 km new 50,000 km managed	40,000km new 75,000 km managed	Planting of new hedgerows Allow existing hedges to grow broader and higher

Bioenergy – Pathway 1 = 2,195 kt CO_2 eq by 2030 Pathway 2 = 3,446 kt CO_2 eq by 2030



CW/

cagasc

TEAGASC

Bioenergy – Pathway 1 = 2,195 kt CO_2 eq by 2030 Pathway 2 = 3,446 kt CO_2 eq by 2030

CW/

Bioenergy

Measure	Pathway 1	Pathway 2	Description of mitigation measure
Biomethane	1 TWh	5.7 TWh	Displacement of natural gas with biomethane
Woody/perennial crop biomass	25% dairy 15% other	4.1 TWh 24kha biomass	Displacement of solid fuels

Key Messages

- Agriculture's sectoral targets can be achieved using very high adoption rates of GHG mitigation measures as outlined in Pathway 2
- Increased advisory and extension services will be key to helping guide farmers and landowners on the path to reduced GHG emissions in 2030 and towards climate neutrality
- The levels of uptake in P2 are beyond what advisory and peer-learning can deliver alone
 clear policy/regulation/incentives will be required
- Reductions in LULUCF emissions of greater than 14% (the EU LULUCF target) will require
 new science
- Agriculture and land-use sourced energy substitution can significantly contribute to energy sector decarbonisation
- Continuing research and development of both emission mitigation technologies and inventory adjustments remains a priority to expand and/or enhance the set of mitigation measures available to farmers in order to achieve 2050 Neutrality Targets

