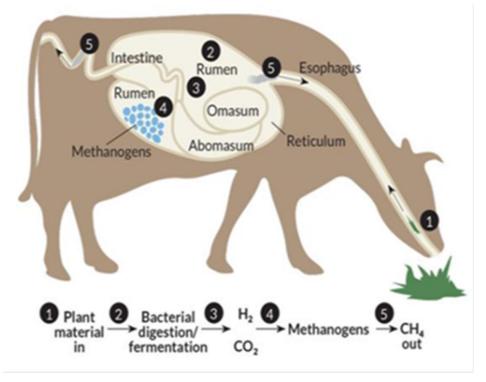
Reducing methane emissions: the role of feed additives

Prof. Sinéad M. Waters

Teagasc Grange Animal and Bioscience Research Department

General Assembly of the Signpost Programme December 15th, 2021

Methane emissions


- Agriculture is responsible for 37% of Ireland's Greenhouse Gas (GHG) emissions
- Sources of **methane** from **Irish agriculture**:
 - Enteric fermentation (feed digestion) 56%
 - Stored slurries & manures 10%
- Climate Action and Low Carbon Development Bill 2021
 - 22-30% proposed reduction in Agri emissions on a 2018 baseline by 2030

COMPARATIVE WARMING EFFECT IN **100 YEARS**

How is enteric methane produced?

Methanogenesis in the rumen during feed digestion

$$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$$

Inefficiency: 2–12% loss of feed energy for the animal

How are we going to reduce methane emissions from agriculture in Ireland?

- Improved management practices Farm efficiency
 - Teagasc MACC
- Breeding strategies (Teagasc and ICBF)
- Feeding strategies Feed additives

METH-ABATE - Development of novel farm ready technologies to reduce methane emissions from pasture based Irish agricultural systems

- **Feed additives** to mitigate methane emissions monitoring their effects on animal productivity (cattle and sheep)
 - 3-NOP (Bovaer), seaweeds, oils, halides, yucca extracts, olive feed.
- Encapsulation for **slow release** options at pasture
- Nutritional and toxicological composition of meat and milk to confirm consumer safety – no residues
- Teagasc Life Cycle (LC) Analysis models
- Farm level cost effectiveness will be evaluated national farm survey.

An Roma Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Additives evaluated in vitro Rumen Simulation Technique

Plant/oil extracts

Olive by-products

Short-lived reactive oxygen halide species

- Seaweeds
- Alaria esculenta (B)
- Himanthalia elongate (B)
- Fucus vesiculosus (B)
- Fucus serratus (B)
- Bifurcaria bifurcate (B)
- Ascophyllum nodosum (B)
- Pelvetia canaliculata (B)
- Asparagopsis taxiformis (R)
- Palmaria palmate (R)
- Chrondus crispus (R)
- Ulva intestinalis (G)
 - Seaweed extracts

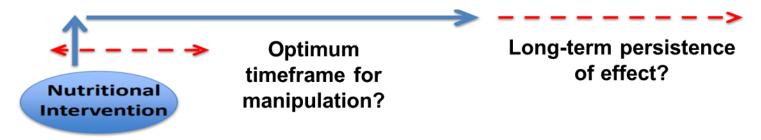
3-NOP (Bovaer)

Irish Examiner 0 \$7047 UFESTILE BUSINESS PROPERTY OPINIOS POOCASTS One burp Now available without at a time prescription from your PASSAGE FOR BOUMER BOVAER® CAN HAVE A TREMENDOUS POSITIVE IMPACT FOR US, local pharmacy O DEM FOR THE PLANET, AND FOR FUTURE GENERATIONS www.viagnaconnect.ie HE IMPIRET WE CAN ADMENT IS HUSE. 1 FEEDING BOWARN TO 3 CONS IS TAKING 1 CAR OF Cows make methane We not that Yaub. Reference to a legendrari of digesting the rough, Reven York Hay, and not if a straight the straight is lock. thane traps heat when double (11), authors is a plantitude gas to exciting effect is during whet is during the second s LATES Results of trial with 3-NOP can reduce cow methane Canhel townial. ser® reduces methane methane inhibitor Bovaer® Reduction methone emissions by 30% production per care Fameral hone A Dutch company is seeking EU authorisation for a feed additive for dainy cows to reduce their methane emissions by around Common ration for dairy cows 40% maine silage 36%-38% • 30× Owner: Pep? Mr across the Netherlands* 60% grass silage w it works Ration for dairy cows, more 100% grass slage 27%-35% Brother 1 Notiven oph soman, ministering host time state. This mission hydrogen and unless disable, to anyone combines these grant n network Research is a bast addition that suggresses the analysis, so test mathem gots proceeded common in the northwest vaer* saves 1 tonne of CO, equivalent per cow every year of the Netherlands* Ration for dairy cows, more 80% make slage 35%-40% **1** • common in the southeast 37% grass slage replacement in frame space the Intelling Access¹⁴ to 1 willing upon 1 the feasing house?" is 3 man to the lating on all thinks analytical forget. Theoly also at of the test. putting a force of at addise tess. of the Netherlands* f ¥ S in Z 100,00.00,000-1046 EXPERIENCES PODCI O DSM A Dutch company is seeking EU authorisation for a feed additive for dairy cons to reduce their methane emissions by around 30%. "Nation of grans silage and make silage in dentary multi-algo can differ per anna and per farm.

8245

30%.

Irish animal trials


- Sheep: May-September 2021
 - Agolin, Mootral, oils, halides, seaweed, seaweed extract
- **Beef:** commencing 2022
 - Ad lib grass silage + concentrates
 - Treatments: Control, 3-NOP, plus most promising additives from sheep study
- **Dairy:** commencing 2022
 - Grazed swards (Grass + clover)
 - Treatments: Control, slow-release 3-NOP and most promising additive from sheep study

Early life intervention

First month of life presents a time-frame during which the rumen microbiome becomes established

- Lasting effects on rumen functionality including methanogenesis, which can extend into later life
- Meale et al. (2021) Early-life administration (oral dose) of dairy calves with 3-NOP from birth-to-14 weeks of life
- Reduction in methane emissions, which persisted to 12 months of age
- Cumulative reduction of circa 150 kg of CO2eq per head in these cattle during the first year of life

- Methane is a potent agricultural GHG
- National and international commitments to significantly reduce methane emissions
- Promising feed additives being assessed under a systematic approach, for methane mitigation potential
- Slow release for application at grazing
- Potential for early life intervention

Thank you for your attention

DNITORING & MITIGATION OF GREENHOUSE GASES FROM AGRI- AND SILVI-CULTURE

SEASOLUTIONS