

Leading | Protecting | Enhancing

Understanding the hydrological dynamics of acid herbicides in river catchments using high-resolution data

Phoebe Morton*, Rachel Cassidy, Phil Jordan, Colin McRoberts, Stewart Floyd, Briege McCarney, Donnacha Doody

afbini.gov.uk

November 2019

A project funded by

www.daera-ni.gov.uk

a

An Roinn Tithíochta, Pleanála agus Rialtais Áitiúil Department of Housing, Planning and Local Government

Project Partners

The 'Source to Tap' project is supported by the European Union's INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB).

Source to Tap – project background

An innovative project to protect and improve the rivers and lakes within cross-border catchments in Ireland/Northern Ireland.

 Two cross-border catchments:

afb

- Catchment 1 = 384 km²
- Catchment 2 = 386 km²
- Pesticide concs >>DWD limit of 0.1 µg L⁻¹ in surface water abstracted for drinking water treatment before supply.

AGRI-FOOD & BIOSCIEN

Which pesticides?

MCPA – main concern

- Most used herbicide on marginal and upland agricultural land in Ireland/Northern Ireland
- Suppress rushes (Juncus spp.)
- Highly soluble

Other acid herbicides in the catchments include:

- Mecoprop
- Fluroxypyr
- Triclopyr

Impact of sampling frequency (simulated from high resolution data)

- Sampling typically weekly across EU water companies e.g. NI Water sample every 6-10 days
- Higher frequency needed to identify sources and for development of mitigation options

High resolution monitoring

• Weekly sampling misses peaks and troughs.

High resolution monitoring – Catchment 1

- Very little high resolution pesticide data for the island of Ireland
- Shows problem greater than expected
- Pesticide removal requires additional treatment = increased costs

High resolution monitoring –Catchment 2

- Enables analysis to understand sources and pathways
 - Focus on Catchment 1

Storm event selection

- Storm events identified by discharge peaks
- Discharge and concentration standardised 0-1 for each event with 7 or more pesticide samples

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source

Discharge

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source
- Anti-clockwise
 - Flow peaks before pesticide concentration
 - Supply limited
 - Further source

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source
- Anti-clockwise
 - Flow peaks before pesticide concentration
 - Supply limited
 - Further source
- No hysteresis

afb

 Pesticide concentration and flow peak together

> AGRI-FOOD & BIOSCIENCES

0.25 -

0.00 -

0.00

0.25

0.50

Discharge

1.00

0.75

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source
- Anti-clockwise
 - Flow peaks before pesticide concentration
 - Supply limited
 - Further source
- No hysteresis
 - Pesticide concentration and flow peak together

AGRI-FOOD & BIOSCIENCES 0.00 -

0.00

0.25

• Figure-of-8

afbi

0.50

Discharge

1.00

0.75

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source
- Anti-clockwise
 - Flow peaks before pesticide concentration
 - Supply limited
 - Further source
- No hysteresis
 - Pesticide concentration and flow peak together

AGRI-FOOD & BIOSCIENCES

• Figure-of-8

afb

Complex dynamics

Predict and understand sources and pathways of solutes during rainfall events

- Clockwise
 - Pesticide concentration peaks before flow
 - Transport limited
 - Closer source
- Anti-clockwise
 - Flow peaks before pesticide concentration
 - Supply limited
 - Further source
- No hysteresis
 - Pesticide concentration and flow peak together

AGRI-FOOD & BIOSCIENCES 0.00 -

0.00

0.25

• Figure-of-8

afb

Complex dynamics

0.50

Discharge

source to top

1.00

0.75

ΔR and ΔC

Equations used are from Butturini et al. (2006) Biogeochemistry, 77: 327-349. DOI 10.1007/s10533-005-0711-7 $\Delta R = R*Ah*100$

- Clockwise = 1
- Anti-clockwise = -1
- No hysteresis = 0
- Figure-of-8 = 0
- Complex = 0

ΔR and ΔC

Equations used are from Butturini et al. (2006) Biogeochemistry, 77: 327-349. DOI 10.1007/s10533-005-0711-7 $\Delta R = R*Ah*100$

- Clockwise = 1
- Anti-clockwise = -1
- No hysteresis = 0
- Figure-of-8 = 0
- Complex = 0

ΔC = ((Cs – Cb)/Cmax)*100 Proportional concentration change over event

$\Delta R vs \Delta C$ – Catchment 1

How is hysteresis useful?

- Different movement of MCPA to other herbicides – MCPA has a higher K_{oc} so runs off slower? MCPA from more distant sources?
- Little dilution of any herbicide – each event distinct.
- Many events have ΔR of 0
 - No distinct hysteresis
 - Different locations contribute to same events

How is hysteresis useful?

Further data could enable prediction of the timing of pesticide concentration peaks based on antecedent flow – benefit water companies

How else are the data useful?

at

AGRI-FOOD & BIOSCIENCES

Summary

Pesticide monitoring

- Long term high resolution data for island of Ireland
- Issue is greater than initially thought problem for water companies

Acid herbicide dynamics in relation to flow

- Help inform on locations of sources in catchments
- Help inform on flow pathways of different herbicides
- Possibly can predict timing and magnitude of pesticide concentration peaks based on antecedent flow and SMD – benefit water companies

Phoebe.Morton@afbini.gov.uk @PhoebeM_AFBI

