









# An integrated assessment framework for assessment of key ecosystem services and effect on aquatic ecology

Katri Rankinen<sup>1</sup>, Kirsi Usva<sup>2</sup>, Harri Lilja<sup>2</sup>, Merja Saarinen<sup>2</sup>, Elena Valkama<sup>2</sup>, Jukka-Pekka Vähä<sup>3</sup>

- 1 Finnish Environment Institute
- 2 Natural Resources Institute Finland
- 3 The Association for Water and Environment of Western Uusimaa

### **Background of FRESHABIT LIFE IP**



- Natural and cultural values form the basis of our water heritage
- We implement a range of water protection measures to reduce the loading that catchment areas impose on water bodies
- We improve the habitats of freshwater pearl mussel (Margaritifera margaritifera) by restoring streams, rivers and lakes



http://www.metsa.fi/web/en/freshabit

#### **Freshwater Pearl Mussels**

- The known populations in southern Finland consist of elderly individuals incapable of reproduction
- We collect glochidia larvae from the populations in the rivers Mustionjoki and Ähtävänjoki
- The larvae are first grown in the gills of salmon fish and then, in artificial channels within gravel
- The tiny young mussels are then transferred back to their home waters



Photos: Tuija Mattsson







#### **Habitat criteria**



| Parameter             | Limit           | Criteria           |
|-----------------------|-----------------|--------------------|
| рН                    | ≥ 6.2           |                    |
| TP                    | < 35; 5-15 μg/l | Mean               |
| TN                    | < 1000 µg/l     |                    |
| NO <sub>3</sub> -N    | < 125 μg/l      | Mean               |
| Turbidity             | < 1-1.5 FNU     | Mean, spring flood |
| Colour                | < 80-85 mg Pt/l | Spring flood       |
| Water temp.           | < 23-25 °C      | Max.               |
| Redox                 | > 300 mV        | Min.               |
| Fine particles (<1mm) | < 25%           |                    |

Degerman et al. 2009; Törrönen 2016

# Mustionjoki river basin

- Lower reach of the Karjaaanjoki river basin
- Soil types mainly clay and moraine
- Crop production area
- Monthly water quality and daily discharge monitoring in the main river
- Monitoring campaignes during the project in branches





# Mustajoki river basin

#### **Current water quality**

| Parameter          | Lake outlet | Basin<br>outlet |
|--------------------|-------------|-----------------|
| Turbidity          | 4 FNU       | 12 FNU          |
| TP                 | 24.7 μg/l   | 31.9 µg/l       |
| TN                 | 799 μg/l    | 914.6 μg/l      |
| NO <sub>3</sub> -N | 150 μg/l    | 430.5 μg/l      |

#### **Habitat requirements**

| Parameter          | Limit 1    | Limit 2      |
|--------------------|------------|--------------|
| Turbidity          | 1 FNU      | 1.5 FNU      |
| TP                 | 5-15 μg/l  | < 35 µg/l    |
| TN                 |            | < 1000 µg/l  |
| NO <sub>3</sub> -N | < 125 µg/l | (< 500 µg/l) |



Possible habitat sites

64%

• 3 possible sites to where return mussels

Main pressure for water quality comes from agriculture





# **Agri-Environmental Programme**

#### Basic measures

- Farm scale environmental planning and monitoring
- Lay out and care of fallows and filter strips
- Balanced fertilization of crops

#### Additional measures

- Targeted fertilization
- Vegetation cover in winter or reduced tillage
- Calculation of nutrient balances
- Cultivation of catch crops





#### An integrated assessment framework





#### **INCA** models

- Calculates N, P and C transport from terrestrial environment to waters
- Dynamic, semidistributed, process based
  - N first order kinetics



Level 3: Cell Model

River network

Level 2: Sub-catchment

comprising 1 to 6 land use types

Reach 1

# **Scenarios for water protection**







#### Year 1995

- High nutrient balance
- Some no-till area

# Current situation

- Low nutrient balance
- High no-till area

#### Optimum

- Optimal nutrient balance
- Optimal no-till area



Photo: Katri Rankinen

# Results of total phosphorus

- At the Habitat Site 1 TP concentration stayed close to lower TP limit (5-15 µg/l)
- At the Habitat site 2 in the main river
  TP concentration stayed most of the time under upper TP limit (35 μg/l)
- At the Brobacka site concentration stayed over the upper TP limit (35 μg/l)





# Results of total phosphorus

- Phosphorus fertilization has decreased since 1995
  - Soil test P values have decreased
  - Should be seen in TDP concentrations
- No-till area has increased
  - Changes ecosystem prosesses
  - Increases TDP in surface layer (equivalent to 3-4 kg P fertilization)







# Results of total nitrogen

- At the Site 1 NO<sub>3</sub>-N remains under TN level 1000 (or 500) μg/l and most of the time under nitrate level 125 μg/l
- At the Site 2 concentration remains most of the time under TN level 1000 μg/l
- At the Brobacka site concentration remains relatively often over 1000 μg/l





#### Conclusion

- Most promising habitat site is Site 1 at the upper river
  - Benefit from clear lake water
  - Field-% is high enough that we can see effects of agri-environmental measures
- Phosphorus is a wicked problem; if we like to decrease PP we tend to increase TDP
  - It is hard to go under 1,5 FNU level, because turbidity in lake water is 4 FNU
  - Identificate erosion sensitive areas (also upper reachers) and target effective measures there
- We can influence more to nitrate concentration; new measures are needed
  - Catch crops, buffer zones



Toast fo the bright future of pearl mussels

Thank you!





Photo: Katri Rankinen