Room for nutrient improvement: A Field scale audit of P management and soil P trends in two mixed-use catchments

the state to series in

CATCHMENT SCIENCE 2019

Noeleen McDonald^{1,2}

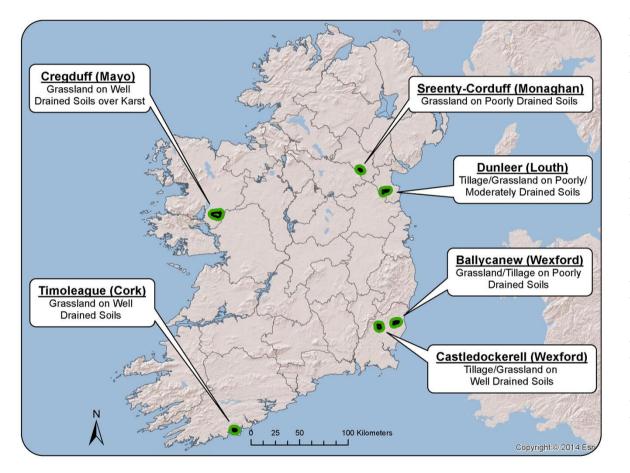
David Wall³, and Per-Erik Mellander^{2,3}, Cathal Bucke^{y4}, Mairead Shore⁵, Ger Shortle⁶, Simon Leach², Edward Burgess², Tom O'Connell² and Phil Jordan⁷

¹ Dept of Agriculture Food and the Marine, Research & Codex Division, Agricultural House, Dublin
 ²Agricultural Catchments Programme, Teagasc, Johnstown Castle Environmental Research Centre, Co. Wexford
 ³Soils Environment and Land use, Teagasc, Johnstown Castle Environment Research Centre, Co. Wexford
 ⁴Agricultural Economics and Farm Surveys Teagasc, Athenry, Co. Galway, Ireland
 ⁵ Local Authority Water Support and Advice Team, Limerick County Council, Co. Limerick, Ireland.
 ⁶Teagasc Advisory, Dublin Rd, Enniscorthy, Co. Wexford
 ⁷School of Geography and Environmental Sciences, Ulster University, Coleraine, N. Ireland.

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

Background

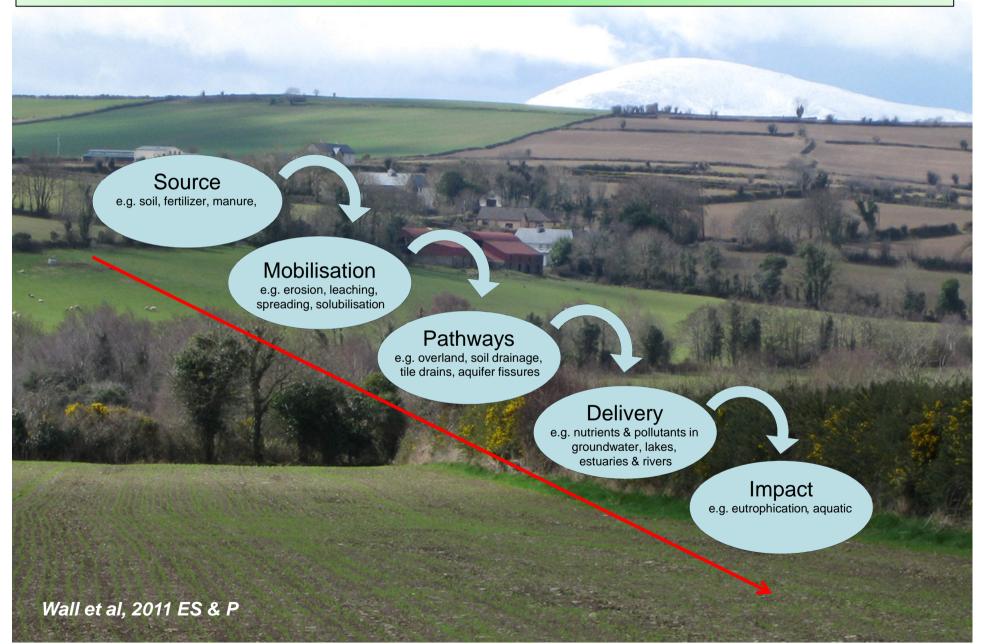
- Phosphorus (P) is an essential **primary nutrient** needed to sustain and achieve high agricultural output on farms.
- P is also recognised as a **key trophic pressure in waters**, contributing to water quality decline.
- EU Nitrates Directive, (1991)

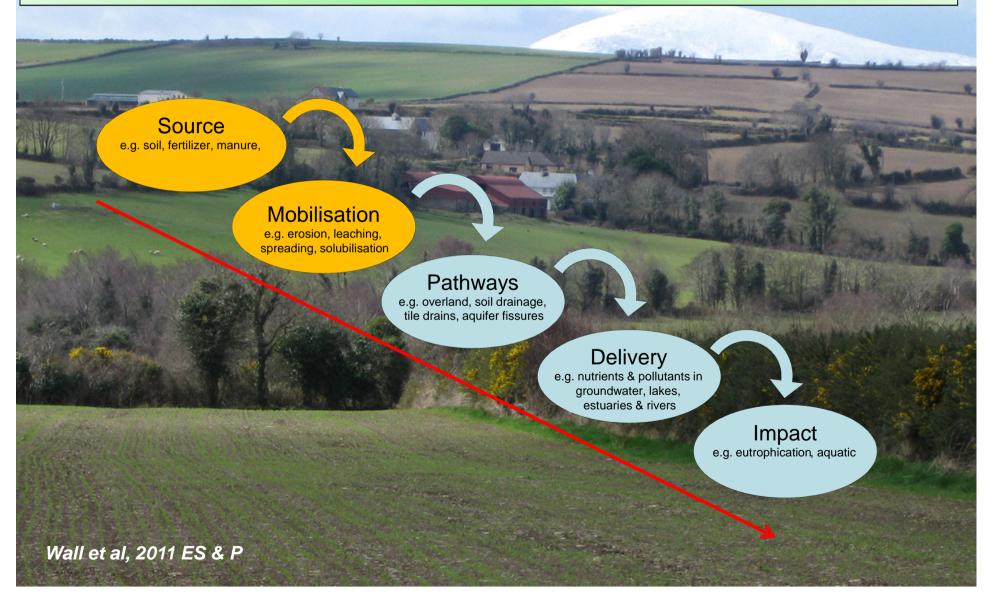

National Action Programme (NAP) measures applied on a whole-territory for N and \underline{P} since 2006.

- Measures restrict P applications to the land, according to agronomic soil test P (STP: Morgan's P mg/l) levels:
 - Index 1:very deficient 0-3 mg/l
 - crop/animal requirements + build up
 - Index 2: deficient 3.1- 5 mg/l grassland/ 6mg/l Arable
 - crop/animal requirements + build up
 - Index 3: optimum –5.1- 8mg/l grassland / 6.1- 10 mg/l Arable
 - maintain crop/animal requirements,
 - Index 4: excessive > 8mg/l grassland / 10mg/l Arable

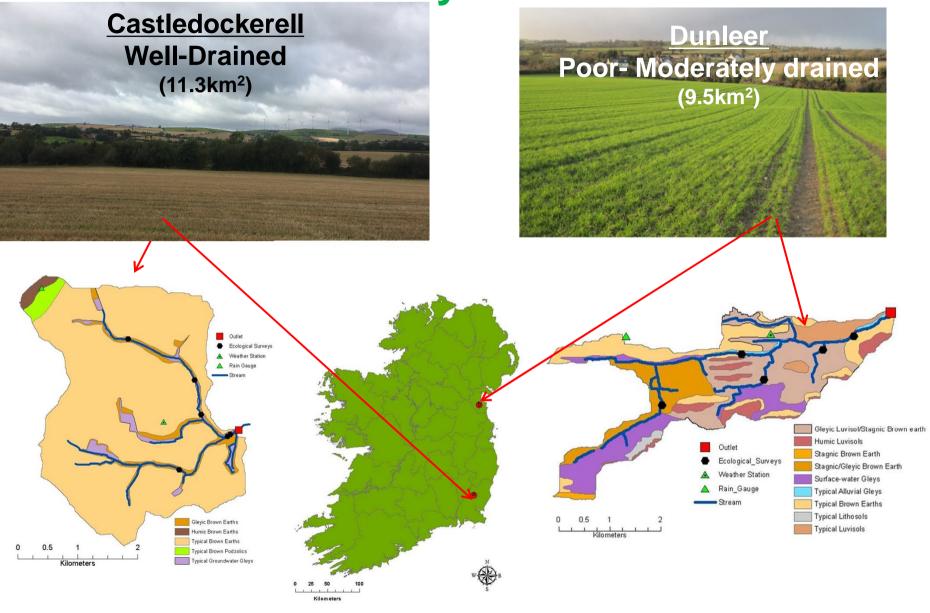
(levels above crop/animal requirements),

•Decrease levels (risk to water quality) by P mining

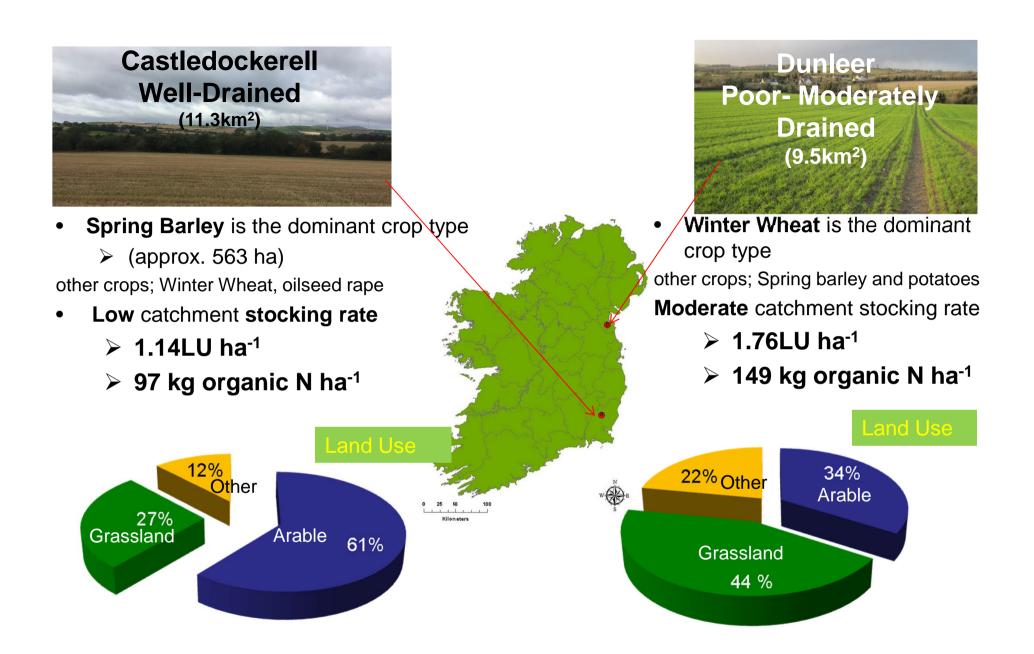

Irish Agricultural Catchments Programme


- Established in 2008
- Evaluate the environmental & economic effectiveness of NAP measures
- Across 6 Catchments
- Representing dominant land-types & production systems
- Integrated advisory & research approach
- >320 farmers individual contact
- Collaborations national, international

Evaluate the biophysical effectiveness of NAP measures


Observed across the nutrient transfer continuum at catchment scale

Study Aim: Evaluate the effectiveness of P measures To reduce soils with excessive soil P across a 4 year study period in two contrasting mix-used catchments



Study Sites

Annual Precipitation: 1017 mm

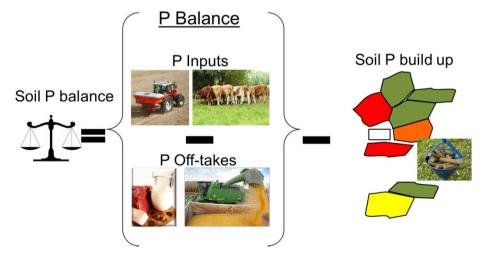
Annual Precipitation: 934 mm

Methodology

Soil census for available P; Soil test P (STP; Morgan's extractable P)

- Castledockerell: 2009 (baseline) & 2013 (repeated)
- Dunleer: in 2010 (baseline) & 2014 (repeated)
 - < 2 ha (approx. 397-416 samples each year)</p>
 - 10cm depth

2010 to 2013: Field scale records

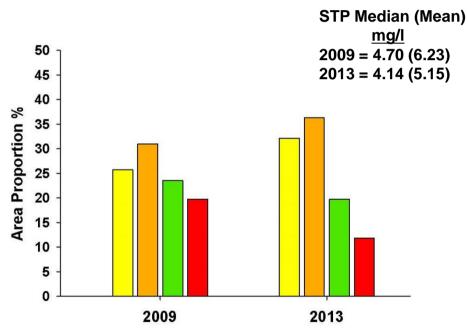

Nutrient input

- Fertilizers (organic + chemical)
- Meal fed at grazing
- Grazing stock

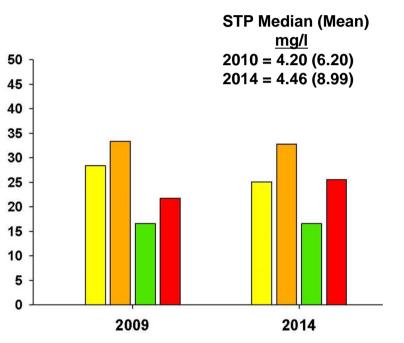
Nutrient off-takes

- Crop (i.e. grain, straw, grass silage)
- Grazing stock (i.e. meat & milk)

Calculate field and soil P balances



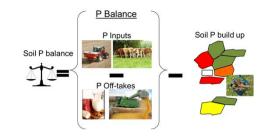
Soil P Trends in Catchment Soils


P Index 1 (Very deficient)
P Index 2 (Deficient)
P Index 3 (Optimum)
P Index 4 (Excessive)

Castledockerell

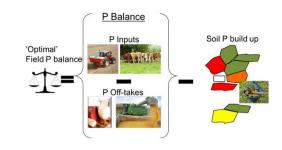
- 4% decline in Index 4 soils
- 3% decline in Index 3 soils
- 7% increase in Index 1 & 2 soils:
 - > 2013: 67% of the area

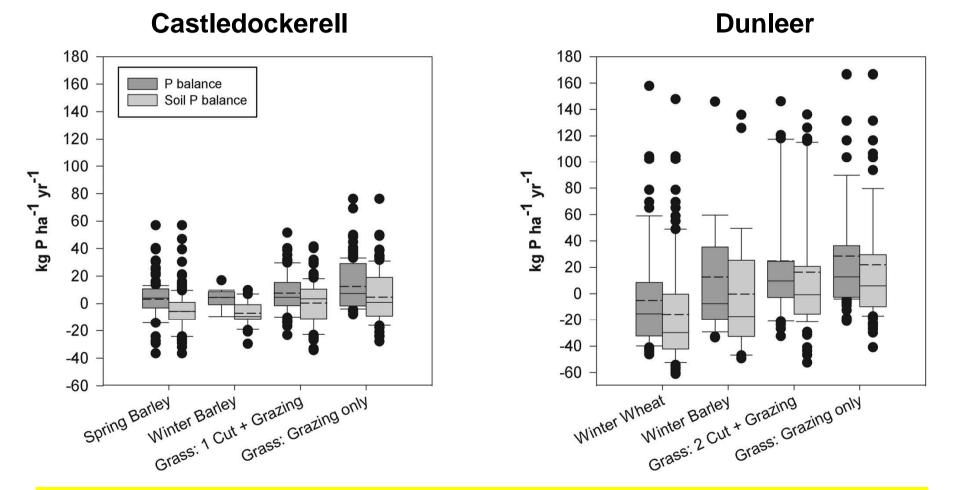
<u>Dunlee</u>r



- 4% increase in Index 4 soils
- Index 3 constant at 17%
- 2014: 57% of area in Index 1 & 2 soils

Poor distribution of P across both Catchments


Area Proportion %


Average Field P Balances (P inputs, off-takes & soil P build up) 2010-2013

	Castledockerell				Dunleer			
	2010	2011	2012	2013	2010	2011	2012	2013
Phosphorus Inputs	kg/ha/yr							
Total fertilizer P applied	25.0	26.0	28.8	32.2	23.1	33.8	37.5	39.3
Conc. P fed at grazing	2.22	1.09	1.29	1.32	1.61	1.57	1.07	3.39
Phosphorus Off-takes	kg/ha/yr							
Crop P off-take	23.1	24.0	23.3	25.1	24.5	25.3	21.7	24.2
Stocking rate change		-1.2	1.0	0.5		2.7	1.2	3.0
Soil P Build-up required	8.7	8.6	8.6	8.6	9.7	9.5	9.8	9.4
Phosphorus Balances	kg/ha [/] yr							
P balance	2.7	1.9	6.1	7.5	-0.6	13.9	19.0	25.5
Soil P balance	-6.1	-6.7	-2.5	-1.1	-10	4.4	9.2	16.1
	-				_			

P balance of Main Crop Types 2010-2013

Large variability of P management within crop types, especially in Dunleer

Summary

- Area of soils with **high P status** and higher P loss risk potential (Index 4)
 - > Castledockerell; decreased by 4% between 2009-2013
 - > **Dunleer; increased** by 4% between 2010-2014
- More than half (>57%) of the area in both catchments had P deficient soils (Index 1 & 2)
- The average nutrient P inputs per ha increased over the study period resulting in positive field P balances in both catchments.
 - Castledockerell: Increase mineral/ chemical P applications, but did not fulfil the P build-up requirements
 - > Dunleer: Increase organic P sources (imported pig & poultry manure)
- P management within crop types the main sources of variance of P balances
- **Poor P distribution** within catchment farms
 - > P inputs often did not match crop and soil P needs at field scale

- Are soil P mitigation measures having the desired effect at Catchment Scale?
 - Yes in Castledockerell
 - No in Dunleer
- U Why Not?
- Poor **nutrient distribution** within and between farms- *in both catchments*
- NAP provisions for excess manures impeded chances to reduce P in some soils.
- Lag time to reduce high P soils (3 to 20+ years-depending on crop & soil type)
- Recommendation
- Soil, farm and catchment specific nutrient advice needed for dual agronomic and environmental benefits, with particular attention of better nutrient distribution
- Other Other influences of P loss to water; i.e. weather, soil type, hydrology and point sources

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

For more info please see

TResearch Autumn 2019, pg 12-13

McDonald, et al (2019) Agriculture, Ecosystems and Environment, 274: 14-23 <u>https://doi.org/10.1016/j.agee.2018.12.014</u>

> www.teagasc.ie/agcatchments Twitter: @TeagascACP

