NMP online

A tool to support water quality improvement in Ireland

Pádraig Foley Tim Hyde & Pat Murphy 7th November 2019

Agriculture in Ireland

- ~ 4.5 million hectares (of a total of 6.9 million hectares) is dedicated to agricultural land
- > 92.1% grassland
- Livestock production is the primary type of farming conducted
- > 137,100 family held farms
- ➤ The average farm size: ~ 32.5 hectares
- > 41,200 farmers are age 65 and over, 7,400 are under 35

Soil Fertility

- Only 14.24% of soils sampled had agronomic optimum soil fertility levels (11.6% in 2016)
- **84.16%** of soils sampled had a deficiency in at least one parameter
- Low pH continues to be a major issue in Irish soils, limiting nutrient availability and use efficiency. Lime usage has decreased significantly since the 1970's.

Farmer challenges

- Need to achieve improvement in Water Quality
- ➤ Need to reduce GHG and Ammonia emissions Improve N efficiency
- Achieving good nutrient status for crop production
- Regulation
- Farm gate balance for P and limits on N related to stocking rate
- Regulation at Farm Level Makes individual plot allowances complicated
 - Complex calculation system
- Fear of Regulation and Penalties
- Increased cost of Fertiliser and Income under pressure

NMP Online

- Began with compliance
- Today we believe that it can deliver much more
 - Water quality
 - Emission reduction
 - Soil Fertility
 - Quality of Planning (farm level and policy level)
 - Efficiency for Advisers
 - Delivering Change
 - Research/Data

But First

What is NMP Online

NMP Online – A collaborative Project

- Developed by Teagasc (Agriculture and Food Development Authority)
- Open to ALL users Private and Public Advisers
- Supported by Department of Agriculture Food and the Marine
 - Agri Environmental Schemes
 - Derogation Plans
 - Data Provision to improve efficiency
- Supported by Industry Sustainability Initiative

NMP Online Data Sources

LINKED GIS Layers

- Layers
 - OSI
 - Ortho
 - Soil Database
 - Subsoil
 - Forestry
 - Commonages
 - Yard Map

DATABASE Stats

- Took three years to develop
- Available to users since mid 2016
- Users 800
 - > 250 in Teagasc
 - 550 Private Consultant and Industry
- Plans
 - 65,000 Farmers
 - ► GLAS 50,000
 - Derogation 5,500
 - Other 10,000
 - > Total Plans on System >200,000

DATABASE Stats

- > 200,000 Plans
 - Average 10 Plots
 - Average 7 Soil Samples
 - Average 2-3 Categories of Animals
 - 10,000 with Storage
- Planning Phase 2 and 3 to broaden capabilities of the system
- Success will be measured by contribution to output and environmental objectives

NMP's will deliver:-

- improved water quality and break the pathway
- roved farm efficiency increased grass growth and inputs, improved farm efficiency and profitability,
- reduced GHG's / Ammonia

NMP's must be easy to understand & implement

NMP Online

- Began with compliance
- > Today we believe that it can deliver much more
 - Water quality
 - Emission reduction
 - Soil Fertility
 - Quality of Planning (farm level and policy level)
 - Efficiency for Advisers
 - Delivering Change
 - Research/Data

Compliance

4th Nitrates action programme (NAP) (2018-2021)

Main measure to prevent pollution of water from agricultural sources under the WFD

- Storage requirements
- Spreading dates
- Fertiliser plans
- Rates N and P/ha per crop
- Additional Allowances
- Soil type

Max 170 kg manure N/ha

Water Quality

NMP Online

- As a result of enhanced planning, implementing of best practice in terms of application of nutrients
 - Right product
 - > Right time
 - Right place
- > Future opportunity
 - Identification of critical source areas for specific management
 - Identification of point sources
 - Integration of research findings (for advisers and for farmers)

The Irish Agriculture and Food Development Authority

Critical Source Area's

- Heavy clay soil
- Slopes from other fields into this area
- Prone to occasional flooding

Need to consider sloped fields near watercourses and drains

Emissions Reduction

NMP Online

- Application of OM
 - Low emissions application
 - > Timing
 - Targeting plots
- Shifting farmers product to protected urea
- Improved soil fertility leading to optimum N efficiency

Soil Fertility

What has happened to Soil Phosphorus Levels since 2007 Soil Test Results

Quality of Planning

The Challenge

- Meet Regulatory needs
- To be scalable dependent on requirement
- To be efficient for the planner
- To be understood and implementable by the farmer
- Open to all users
- Emerging Challenges
 - Competition
 - CAP Regulation Plan for All Farms
 - Focus on GHG and Ammonia

Efficiency of Advisers

The problems for Advisers

- Huge Workload in preparing plans
- Focus on compliance first
- > Little time to focus on agronomic compotency
- Quality of Planning Systems & Plans
 - Farmers did not understand them
 - & did not use them
 - or could not use them

Delivering Change

Farm & Soil fertility Summary Fertiliser Plan Summary Mr NMP Farmer 2017 Herd No. Land Areas Ha 67.58 Total Address Tullycagney, Drumacrib, Castleblayney, , Longford Grassland 19.49 28.8 County (Zone) Arable 48.09 71.2 Weeks Storage Sampled Areas 67.58 100.00 Close Soil Fertility Summary **Overall Fertility Status** Lime **Phosphorus** Potassium Soll Fer pH > 6.2, P & K index 3 or 4 Soil pH > 6.2 P Index K Index Overall pH > 6.2 Chemical Fertiliser Advice **Nutrient Balance Planned Fertilisers** Index 1 P(kg) N(kg) K(kg) Fertiliser **Tonnes** Chemical Recommended 11,218 2,505 (98%) 5,158 CAN(27%N) 13.47 %re Max Chemical Allowed Urea(46%N) 11,651 2,564 3.11 pH, Chemical Usage 4,445 10,980 2,139 14-7-14 13.07 26 10-7-25 0.62 %reduc pH, Pan 26 24-7.5-0 1.62 Soll pH Lime 18-6-12 17.66 2017 2018 2019 20-0-15 2.28 2020 Organic Chemic 6.2-6.5 33% 22.07 1 94 0.27Chemica Mix Ch 12.25 Chemical Usage 1,653 10-7-25 0.00 This report is based on information inputted into Tengesc NMP online. Teagase NMP online Agent: Pas Murphy Date Printed: 01/09/2017

Lime Requirements

	Crop	Area (Ha)	Soil Sample Id			Advised Lin			
Plot Name				Soil Sample pH	Soil Sample Lime Req (T/Ha)	2017 (T/Ha)	2018 (T/Ha)	2019 (T/Ha)	2020 (T/Ha)
1	Winter Wheat (Feed)	5.1	NAL483	6.3	0.0	0.0	0.0	3.0	0.1
10	Grazing	2.5	zzz486	5.7	4.0	4.0	0.0	0.0	.0.
11	Spring Barley (Malting)	5.9	zzz487	6.3	0.0	0.0	0.0	0.0	0.0
12	1 Out + Grazing	6.7	zzz488	5.6	3.5	4.0	0.0	0.0	0.0
13	Winter Barley,Catch Crop Grazed Sown Pre Aug 15(Incl GLAS)	5.2	zzz489	5.7	4.0	4.0	0.0	0.0	0.0
14	Winter Wheat (Feed)	5.0	zzz490	6.4	0.5	0.0	0.0	2.0	0.0
15	GLASLIFP	3.6	NAL490	6.2	0.5	0.0	0.0	2.0	0.
2	Winter Barley	2.5	GAF2	5.8	6.0	4.0	0.0	4.0	0.0
3	Grazing	1.9	GAF3	7.1	0.0	0.0	0.0	0.0	0.
4	Winter Wheat (Feed)	3.3	GAF4	6.1	4.0	0.0	0.0	2.0	0.0
5	Winter Oliseed Rape	3.2	GAF5	6.3	2.0	0.0	0.0	2.0	0.0
6	Winter Barley	5.9	NAL484	6.1	1.5	20	0.0	0.0	0.0
7	Winter Wheat (Feed)	6.8	NAL485	5.4	6.0	5.0	0.0	0.0	Ó.

ority

Joe Bloggs - Ph and Lime Application 2017

uthority

Manure Allocations									
Fertiliser	Estimated T	Applied T	Balance T						
Cartle Slurry	194	195	0						
Farmyard Manure	207	227	0						
Total P in Manures	241								

Planned Fertilisers	
Fertiliser	Tonnes
CAN(27%N)	13.47
Ures(46%N)	3.11
14-7-14	13.07
10-7-25	0.62
24-7.5-0	1.62
18-6-12	17.66
20-0-15-	2.28

Nutrient Balance										
	N(kg)	P(kg)	K(kg)							
Chemical Recommended	11,218	2,505 (98%)	5,158							
Max Chemical Allowed	11,651	2,564								
Chemical Usage	10,980	2,139	4,445							

Plot	Crop	Area(Ha)	Soil Sample	Index NJPJK	Nutrients Applied (Kg/Ha) N P K	Organic Manures		Chemical Fertilisers						
						Farmyard Manure (T/Ha)	Cattle Slurry (M3/Ha)	CAN(27%N) (Bags/Acre)	Urea(46%N) (Bags/Acre)	14-7-14 (Bags/Acre)	10-7-25 (Bags/Acre)	24-7.5-0 (Bags/Acre)	18-6-12 (Bags/Acre)	20-0-15 (Bags/Acre)
1	Winter Wheat (Feed)	5.1	NAL483	1[2]2	209 37 96	10.0	0.0	4.0	0.0	4.0	0.0	0.0	0.0	0.0
2	Winter Barley	2.5	GAF2	3 3 2	109 26 79	0.0	0.0	20	0.0	1.0	2.0	0.0	0.0	0.0
3	Grazing	1.9	GAF3	1[4]3	208 0 28	0.0	0.0	0.0	3.0	0.0	0.0	0.0	0.0	1.5
4	Winter Wheat (Feed)	3.3	GAF4	1 3 4	252 37 0	0.0	0.0	4.0	0.0	0.0	0.0	4.0	0.0	0.0
5	Winter Oliseed Rape	3.2	GAF5	1 3 2	222 19 37	0.0	0.0	5.0	0,0	00	0.0	0,0	2.5	0.0
6	Winter Barley	5.9	NAL484	1[1]1	175 37 96	10.0	0.0	3.0	0.0	4.0	0.0	0.0	0.0	0.0
7	Winter Wheat (Feed)	6.8	NAL485	3 1 2	143 46 113	10.0	0.0	1.5.	0.0	5.0	0.0	0.0	0.0	0.0
8	Grazing	1.9	NAL486	1 2 2	207 19 73	0.0	10.0	0.0	2.5	0.0	0.0	0.0	2.0	0.0
9	Spring Barley (Malting)	5.3	YBD/839- (3)	3 2 3	89 30 59	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0
10	Grazing	2.5	zzz486	1 2 2	202 17 151	0.0	5.0	1.0	2.0	0.0	0.0	0.0	2.0	0.0
11	Spring Barley (Malting)	5.9	zzz487	1[1]1	156 52 104	0.0	0.0	0.0	0.0	0.0	0.0	0.0	7.0	0.0
12	1 Out + Grazing	6.7	zzz488	1]1]1	208 45 160	0.0	20.0	0.0	1.0	0.0	0.0	0.0	5.0	0.0
13	Winter Barley	5.2	zzz489	3 1 1	126:26 107	0.0	0.0	0.0	0.0	3.0	0.0	0.0	0.0	3.0

Research/Data

Research

- Soil Fertility Trends
- Requirement to use the data to improve outcomes
- Increase use of GIS data
- Variable recommendations based on soil type
- Possibilities to investigate and increase knowledge onmicronutrient status
- Linkages to other systems Pasturebase
- GDPR Challenge

At Farm Level

- John Leahy, Athea, Co. Limerick
- Increase mineral soil pH from 5.5 to 6.3 over a period of 3 years
- > 100t lime per year on 40ha costing €2,600/yr.
- Increased average grass production by 1.5t DM/ha/yr (valued at €272/ha)
- Average lime applied per year 7.5t/ha (Costing €65/ha/year)
- ROI of €4 of grass extra for every €1 in lime

