New methods for 3rd generation RBM plans under the WFD assessment to be made on the impact of groundwater on surface waters

Bertel Nilsson¹ (bn@geus.dk),

Martin Søndergaard² Liselotte Sander Johansson², Annica Olesen², Jolanta Kazmierczak ¹, Lærke Thorling¹, Lars Troldborg¹

¹ Geological Survey of Denmark and Greenland, DK-1350 Copenhagen, Denmark

² Aarhus University, Department of Bioscience, DK-8600 Silkeborg, Denmark

Groudwater-Surface water interaction (WFD/GD)

Focus in this presentation

Quantitative impact of groundwater on lakes

Groundwater inflow is very heterogen in space and time

Max: ~1

Min: ~ 0.01 m/day

Focused groundwater discharge of phosphorus to a eutrophic seepage lake (Lake Væng, Denmark): implications for lake ecological state and restoration WATER RESOURCES RESEARCH, VOL. 49, 1-14, doi:10.1002/wrcr.20436, 2013

High-resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Væng, Denmark

E. Sebok, ¹ C. Duque, ^{1,2} J. Kazmierczak, ¹ P. Engesgaard, ¹ B. Nilsson, ³ S. Karan, ¹ and M. Frandsen^{3,4}

Jacob Kidmose + Bertel Nilsson + Peter Engesgaard + Mette Frandsen - Sachin Karan - Frank Landkildehus -Martin Søndergaard - Erik Jeppesen

Water Resources Research

RESEARCH ARTICLE

10.1002/2016WR019326

Key Points:

Seepage lake interacting with aquifer under seemingly steady state conditions shows high spatial and temporal heterogeneity in discharge Groundwater discharge to the lake is focused at the adjacent wetlands and in high discharge zone occupying ~1% of the lake bottom

Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers

J. Kazmierczak^{1,2}, S. Müller¹, B. Nilsson², D. Postma², J. Czekaj³, E. Sebok¹, S. Jessen¹, S. Karan⁴, C. Stenvig Jensen¹, K. Edelvang¹, and P. Engesgaard¹

1×C×

¹Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark, ²Geological Survey of Denmark and Greenland, Copenhagen, Denmark, ³Faculty of Earth Sciences, University of Silesia, Sosnowiec, Poland, ⁴COWI, Kongens Lyngby, Denmark

Most process studies on small scale

Very few whole lake studies

Mithra-Christin Hajati^{a,a}, Mette Frandsen^{b,c}, Ole Pedersen^b, Bertel Nilsson^c, Carlos Duque^{d,e}, Peter Engesgaard^d

Groundwater

The Role of Groundwater for Lake-Water Quality and Quantification of N Seepage

by Jacob Kidmose^{1,2}, Peter Engesgaard¹, Daniela A. Oliveira Ommen³, Bertel Nilsson⁴, Mogens R. Flindt³, and Frede Ø. Andersen³

How much is "significant quantitative impact" ?

National monitoring data (NOVANA), other lake specific data and groundwater data (in 500m buffer)

Lake area	Method to determine the potential groundwater-lake contact	# lakes	Data sources (databases, national models, lake specific data)
> 100 ha	DK-model	89 (100%)	DK-model, DEM
	Water balance method	89 (100%)	DK Met data, HYMER, VandWeb, DK-model
< 100 ha	Segment approach (USGS method)	431 (56%)	JUPITER borehole database, DK-model, DEM
	EC in lake water and groundwater	256 (33%)	NOVANA, JUPITER
	Water Balance Approach	?	DK Met data, HYMER, VandWeb, DK-model
	Lake stage water level	(114)	NOVANA, DEM
Number of	akes 350 300 285 250 200 168 150 100 50	83	Total 857 NOVANA lakes (environmental targeted

10-100 ha 100-1000 ha >1000 ha

0

1-5 ha

5-10 ha

Validation lakes

- 12 CLEAR research lakes (blue)
- 18 Intensive monitored lakes (red)
- 857 National monitored (NOVANA) lakes (grey)

The 5-Tier Method: Groundwater Quantitave Status

To summarize

- The suggested 5-tier method was found to be useful, however due to missing data made it impossible to complete some of the proposed tiers
- The current national monitoring programme (NOVANA) is only to a lesser extent sufficiently coherent and comprehensive to enable interdisciplinary qualitative and quantitative risk assessments to be made on the impact of groundwater on lakes

Acknowledgements

The Danish Environmental Protection Agency (Miljøstyrelsen)

PI RURAL project: Rural Water Supply and Food Security (EU-China)

Catchment Science Conference 2019

7th November 2019, Wexford, Ireland,

