On the Reactive Transport at Catchment Scales with StorAge Selection Functions Gavan McGrath Environment, Soils and Land Use Dept.

Outline

- Travel Time Distributions and Age
- StorAge Selection
 Functions

- Reactivity from High-res data
- Potential pitfalls with common assumptions in SAS modelling

Why Age Matters

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Two Water-Worlds Hypothesis

Modelling over the Ages

A Eulerian Catchment

•

•

•

Time, Residence Time (Age), and Travel Time

 $T_r = t_i - t_e$

A Lagrangian Catchment

Contribution of Stored Water of Various Ages to Stream Flow

A Simple Pesticide Transport Model

¹⁰ Modified from Bertuzzo et al., 2013, WRR

Variability of Residence Times

Basic Equations and Common Assumptions

Tracers

Stream concentration = sum over all input times of input concentration (C_{in}) at time t_i and the distribution of stream water ages (p_Q) at time t

$$C_Q(t) = \int_{-\infty}^t C_{in}(t_i) p_Q(t - t_i, t) dt_i$$

Reactive Solutes

Stream concentration = sum over all input times of <u>resident concentration</u> (C_S) at time t_i and the <u>distribution of solute flux ages</u> (p_F) at time t $C_Q(t) = \int_{-\infty}^t C_S(t - t_i, t) p_F(t - t_i, t) dt_i$

Learning From High-res Reactive P Response Functions

Reactive P Conceptual Model

Gradual build up in concentration in mobile zone (C_{mobile}) when Q is low Rapid flush of C_{mobile} when Q increases Rapid dilution of C_{mobile} during high flows to rate limited mass exchange

Cross Wavelet Spectra RP and Precipitation

Q: Are these catchments really all that different?

Reactive P Concentration (mg/L)

A: Differently organized sources and flux distributions

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

A Possible Resolution

Use Tracers to Establish the rSAS function and p_Q then weigh p_F by p_Q

Tracers

Stream concentration = sum over all input times of <u>input concentration (C_{in})</u> at time t_i and the distribution of <u>stream water</u> ages (p_Q) at time t

$$C_Q(t) = \int_{-\infty}^t C_{in}(t_i) p_Q(t - t_i, t) dt_i$$

Reactive Solutes

Stream concentration = sum over all input times of <u>resident concentration</u> (C_S) at time t_i and the distribution of <u>solute flux</u> ages (p_F) at time t

$$C_{Q}(t) = \int_{-\infty}^{t} C_{S}(t - t_{i}, t) p_{F}(t - t_{i}, t | p_{Q}(t - t_{i}, t)) dt_{i}$$

-cuzuSC

Summary

- The SAS approach
 - current flavour-of-the-month for catchment-scale solute transport modelling
 - intuitive interpretation of hydrological processes contributing to solute export
- Reactive solutes remain a challenge
- Combining multiple highres solutes can possibly help untangle
 - Sources
 - Pathways; and
 - Mitigation timescales
- Need good input data!

