

José Enrique Cano Bernal¹, Katri Rankinen¹ and Sophia Thielking²

1. Finnish Environment Institute SYKE, Latokartanonkaari 11, 00790 Helsinki, Finland E-mail: jose.cano-bernal@ymparisto.fi

2. Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Changes in Organic carbon concentrations in correlation with climate and land use changes in Northern **Finland's** river catchments

- Total Organic Carbon (TOC) has shown an increasing trend in boreal regions
- The disturbances created by climate change, deposition, mineralization, rising temperature and land use change are provoking that the TOC storages gradually become sources of TOC instead
- Our study includes four northern catchments sparsely populated and mildly impacted by agriculture and industry

• Three periods according to Corine Land Cover inventory: 2000-2006 / 2007-2012 / 2013-2018

Catchment	Area (km ²)	Artificial (%)	Agriculture (%)	Forest (%)	Wetlands (%)	Water Bodies (%
lijoki	14179.32	0.12	1.06	82.34	11.14	5.33
Simojoki	3157.21	0.09	1.32	78.96	14.43	5.19
Kemijoki	51086.43	0.25	0.52	77.43	17.67	4.14
Paatsjoki	14686.46	0.10	0.00	76.04	12.07	11.79
	Devied	TOO -		0		
River	Period	IUC [mg/	/I] Change [%]	Q [m³/s	s] Change	€ [%]

			<u> </u>		
	2000-2006	14.54		37.13	
Kiiminginjoki	2007-2012	17.34	16.15	48.77	23.87
	2013-2018	17.04	-1.76	50.22	2.89
lijoki	2000-2006	10.05		157.3	
	2007-2012	12.02	16.39	179.31	12.27
	2013-2018	12.38	2.91	190.12	5.69
Simojoki	2000-2006	11.69		41.84	
	2007-2012	13.69	14.61	43.22	3.19
	2013-2018	11.83	-15.72	44.9	3.74
Paatsjoki	2000-2006	2.72		158.32	
	2007-2012	2.81	3.20	167.12	5.27
	2013-2018	2.69	-4.46	169.83	1.60

Changes in TOC and Discharge

- Paatsjoki and lijoki are regulated rivers
- TOC samples were taken, aproximately, twice a month, whilst discharge measurements are taken daily
- Simojoki shows the largest decrease in TOC during the period 2013-2018
- At Paatsjoki, TOC and discharge variations are the lowest of all the studied catchments
- Temperature has been constantly increasing during the studied period in all catchments (0.4 – 2°C)

								SO4 Concentration Influence on TOC concentration
	2000-2006		2006-2012		2012-2018		Total	Temperature
	ha	%	ha	%	ha	%	%	Lake
	4745	1.25	4020	1.06	3673	0.96	3.26	Agriculture
Kliminginjoki	3613	0.95	1919	0.50	6047	1.59	3.04	Ditching
	19884	1.40	22298	1.57	17624	1.24	4.22	Precipitation
lijoki	21234	1.50	16453	1.16	24100	1.70	4.36	Forest to Scrub
Circa a i a ki	1851	0.59	2455	0.78	1878	0.59	1.96	Wetlands to Forest
SIMOJOKI	5042	1.60	5804	1.84	2597	0.82	4.26	
	4563	0.31	2213	0.15	1435	0.10	0.56	Forest to Scrub (Cutting)
Paatsjoki	1714	0.12	1885	0.13	5559	0.38	0.62	Scrub to Forest (Growth)

Land use change

- I. SO₄ concentration and temperature are the most influential factors on changes in TOC concentration
- II. Changes in TOC are mostly found in catchments with higher forest cover, unlike expected, as wetlands are considered to be more influencial on TOC changes
- III. Simojoki presents the largest difference between cutting and forest growth
- **IV.** Forest ditching is the individual forestry measure that has high impact in increase of TOC concentration
- V. However, in the whole of Finland, there is a balance as reforestation and 70% of the ditched peatlands currently have forest status

José Enrique Cano Bernal 05-07/11/2019 Catchment Science 2019, Ireland