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Evolutionary Timeline

Life has an incredible amount to teach us about living well on planet Earth, in no small part due to
the fact that it's been thriving here for 3.8 billion years. But, how long is that really? If we take the
age of Earth (4.5 billion years) and compress it into one year, we can better grasp the time-tested
wisdom our fellow planet-mates can bring to the design table.
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* Ruminant numbers globally have
largely been consistent
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* Methane numbers have risen
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Adaptive Multi-paddock Grazing (AMP)
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METHANE IN THE CARBON CYCLE

Carbon in cow

Enteric methane is a
natural by-product of
ruminal fermentation in
reticulo-rumen and hindgut
and is essential for normal
rumen functioning.

During the process of
microbial fermentation,
volatile fatty acids are
produced and used to
meet the metabolic needs
of the animal. Carbon
dioxide and H, that are
produced during this
process are then
converted into CH, by
rumen methanogens and
eructated into the
atmosphere.

g | College of Agriculture
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MICHIGAN STATE UNIVERSITY
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Over 9-12 years, CH, is
broken down into CO, and
H,O by OH- radicals in the
atmosphere. Current GWP
metrics, however, treat this
short-lived pollutant as a
stock GHG, eg. CO,, and may
be overstating the benefits of
reducing emissions as any
warming due to methane is
dependent on the emissions
of that decade and not
cumulative emissions to that
point (Allen et al., 2018).

(Thompson and Rowntree, 2020)



Costa et al., 2021

M

“For example, using GWP100, a constant annual rate of CH4 emissions may
be misinterpreted as having a 3-4 times higher impact on warming than
observed. The use of GWP* can correct this misestimation. - GWP* was
used here to evaluate the impact of agricultural CH4 emissions scenarios
from 2020- 2040, finding that: - A sustained ~0.35% annual decline is
sufficient to stop further increases in global temperatures due to
agricultural CH4 emissions. This is analogous to the impact of net-zero CO2
emissions. - A ~“5% annual decline could neutralize the additional warming
caused by agricultural CH4 since the 1980s. - Faster reductions of CH4
emissions have an analogous impact to removing CO2 from the
atmosphere.”
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Carbon flux assessment in cow-calf grazing systems!

M. B. ('hiavegato,*z J. E. Rowntree,T and W. J. Powerst

*Department of Animal Science, University of Sdo Paulo, Av. Padua Dias, 11, Piracicaba, SP 13418-9200,
-azil; and tDepartment of Animal Science, Michigan State University, 424 S. Shaw Lane, East Lansing 48824

[RACT: Greenhouse gas (GHG) fluxes and
rganic carbon (SOC) accumulation in grassland
stems are intimately linked to grazing manage-
This study assessed the carbon equivalent flux
) from 1) an irrigated, heavily stocked, low-
y grazing system, 2) a nonirrigated, lightly
>d, high-density grazing system, and 3) a graz-
clusion pasture site on the basis of the GHG
ions from pasture soils and enteric methane
ions from cows grazing different pasture treat-
. Soil organic carbon and total soil nitrogen
i were measured but not included in Ceqgq,,
nination because of study duration and time
d to observe a change in soil composition.
- and heavy-stocking systems had 36% and 43%
1 Ceqg,, than nongrazed pasture sites, respec-
(P < 0.01). The largest contributor to increased

Ceqg,, from grazing systems was enteric CH, emi
sions, which represented 15% and 32% of the overa
emissions for lightly and heavily stocked grazing sy
tems, respectively. Across years, grazing systems als
had increased nitrous oxide (N20:; P < 0.01) and CE
emissions from pasture soils (P < 0.01) compared wi
nongrazed pasture sites but, overall, minimally coi
tributed to total emissions. Results indicate no cle:
difference in Cegflux between the grazing systen
studied when SOC change is not incorporated (P
0.11). A greater stocking rate potentially increase
total SOC stock (£ = 0.02), the addition of SOC deep
into the soil horizon (P = 0.01), and soil OM conte!
to 30 em (P < 0.01). The incorporation of long-ter:
annual carbon sequestration into the determination ¢
Ceqgy, could change results and possibly differentia
the grazing systems studied.

Key words: beef cattle, enteric methane, grazing management, nitrous oxide

15 American Society of Animal Science. All rights reserved.

INTRODUCTION

teenhouse gas (GHG) fluxes from grassland eco-
ns are ntimately linked to grazing management.
sslands, CO), is exchanged with the soil and veg-
1, N,O is emitted by soils, and CH, 1s emitted by
bial activities 1n the digesta and exchanged with
il. When CO, exchange with vegetation is includ-
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ed in net GHG exchange calculation, these ecosysten
are often observed as GHG sinks (Allard et al., 200
Soussana et al., 2007). Similarly, the inclusion of sc
organic carbon (SOC) accumulation over time in n
GIG exchange accounting might result in grasslanc
with GHG sink potentials (Liebig et al., 2010).
Grassland management choices to reduce GH
budget may involve important trade-offs. Allard
al. (2007) observed that enteric CH,, emissions e
pressed as CO, equivalent strongly affected GH
budget in intensively and extensively manage
grasslands (average 70% offset of total CO, sink a
tivity). Conversely, Soussana et al. (2007) observe
that the addition of enteric CH, and N,O emissior
from pasture soils resulted in a relatively small offs
of total CO, sink activity (19% average). Grasslanc
management affects SOC storage by modifying
inputs to the soil, primarily through root turnov

4189




Table 3. Pearson correlation (r) and significance (P-value) between GHG emissions sources and
C-equivalent flux (C-eq flux) in dairy grazing systems of Brazil and in beef grazing systems of

United States of America.

Esr:)l:ls:(l:zn C-eq flux contGriI-IIn(l;tion C-eq flux
Dairy grazing systems
CH4 animals 0.671 CH4 animals -0.526
N20 soil 0.505 N20 soil 0.465
CHa4 soit 0.082N5 CHz4 soit 0.157
CO2 soil 0.382 CO2 soit 0.093 NS
Beef grazing systems
CH24 animals 0.005 NS CH24 animals -0.643
N20 soil 0.693 N20 soil 0.354
CHa soit 0.332 CHa soit 0.123 NS
CO2 soil 0.963 CO2 soil 0.366

Chiavegato et al., 2022 (In Review)
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Impacts of soil carbon sequestration on life cycle greenhouse gas emissions | )
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in Midwestern USA beef finishing systems e

Paige L. Stanley™’, Jason E. Rowntree™", David K. Beede®, Marcia S. DeLonge”,
Michael W. Hamm*
“ Department of Animal Science, Michigan Stare University, East Lansing, MI 48824, USA

® Food and Environment Program, Union of Concerned Scientists, Washington, D.C. 20006, USA
© Department of Community Sustainability, Michigan State University, East Lansing, MI 48824, USA

ARTICLE INFO ABSTRACT

Keywords: Beef cattle have been identified as the largest livestock-sector contributor to greenhouse gas (GHG) emissions.
Life cycle assessment Using life cycle analysis (LCA), several studies have concluded that grass-finished beef systems have greater GHG

G s s s intensities than feedlot-finished (FL) beef systems. These studies evaluated only one grazing management system
- continuous grazing — and assumed steady-state soil carbon (C), to model the grass-finishing environmental
impact. However, by managing for more optimal forage growth and recovery, adaptive multi-paddock (AMP)
grazing can improve animal and forage productivity, potentially sequestering more soil organic carbon (SOC)
than continuous grazing. To examine impacts of AMP grazing and related SOC sequestration on net GHG
emissions, a comparative LCA was performed of two different beef finishing systems in the Upper Midwest, USA:
AMP grazing and FL. We used on-farm data collected from the Michigan State University Lake City
AgBioResearch Center for AMP grazing. Impact scope included GHG emissions from enteric methane, feed
production and mineral supplement manufacture, manure, and on-farm energy use and transportation, as well as
the potential C sink arising from SOC sequestration. Across-farm SOC data showed a 4-year C sequestration rate
of 3.59MgCha™ ! yro !in AMP grazed pastures. After including SOC in the GHG footprint estimates, finishing
emissions from the AMP system were reduced from 9.62 to —6.65 kg CO.-e kg carcass weight (CW) ™", whereas
FL emissions increased slightly from 6.09 to 6.12 kg CO,-e kg CW ' due to soil erosion. This indicates that AMP
grazing has the potential to offset GHG emissions through soil C sequestration, and therefore the finishing phase
could be a net C sink. However, FL production required only half as much land as AMP grazing. While the SOC
sequestration rates measured here were relatively high, lower rates would still reduce the AMP emissions re-
lative to the FL emissions. This research suggests that AMP grazing can contribute to climate change mitigation
through SOC sequestration and challenges existing conclusions that only feedlot-intensification reduces the
overall beef GHG footprint through greater productivity.




Results: GHG Emissions

Feedlot AMP
e Similar to finishing emissions  ~45% lower than continuous
reported by other studies (Lupo grazing emissions reported by
et al., 2013; Pelletier et al., 2010) other studies (Capper, 2012; Lupo

et al., 2013; Pelletier et al., 2010)
— Shorter finishing time

— Greater forage quality

— Pasture fertilization
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Results: Net GHG Flux
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Multi-Specie Pasture Rotations and Carbon
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What is Truth?

in Sustainable Food Systems Agroecology and Ecosystem Services
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Regenerative Grazing Debunked

Regenerative agriculture is a newly eodified approach to agri i ing reliance on inputs, as
28,722 views * Feb 6, 2021 h 29K G 386 2 well as restoring and enhanct i h as soil carbon Th icalty
principles suggest that modern livestock systems can be redesigned to better capitalize on animals’ ecological niche as biological
up eyclers and may be necessary to fully regenerate some landseapes. One example is  multispecies pasture rotation (MSPR) Suggesta Research Topic >
system, which symbiotically stacks multiple animal production enterprises (i.e., chickens, cattle, sheep, and pigs) on one
landscape. We conducted a whole-farm life cycle (LCA) of an MSPR in the southeastern United States that was sikrE on
originally converted from degraded cropland. We compared the production outputs, greenhouse gas (GHG) emissions, land
footprints, and soil health i ity (COM) ion system of each i ies. Our 20-
year MSPR chronosequence of soil C and other soil health indicators shows dramatic i since
sequestering an average of 2.29 Mg Cha™ yr™", Incorporation of soil C sequestration into the LCA reduced net GHG emissions of
the MSPR by 80%, resulting in a footprint 66% lower than COM. However, when comparing required land between the two [0 Gpon Supplemantal Bata
systems for food production, MSPR required 2.5 times more land when compared to COM. Thus, while our model indicates that

MSPR can si produce protein while ing land, a consi greater land area is needed when compared ta
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Improving grassiand R
Mmanagement has high potentials  wea.
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for soll C sequestration
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Mosier et al., JEM, 2021
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Cumulative fluxes since mid June
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Take Home Points

 GHG Gas Tradeoffs (and their actual Global Warming Potential)
plus land use need be considered in analyzing impacts of
agriculture production

* Under certain management context, we have measured
considerable soil C changes in land under grazing scenarios, of
which have little to no added nitrogen. Management matters.

 More holistic and systematic approaches to quantifying
ecological impact of animal agriculture are needed.



