Derrypatrick Open Day

Grange Beef Research Centre Wednesday 11 September 2013

Animal & Grassland Research and Innovation Centre Biosecurity, Health and Safety

In the interest of safety and disease bio-security, visitors to the Grange Open Day are asked:

- To use disinfection footbaths provided (on entering and leaving the event)
- Park in designated areas
- Stay on the Open Day route
- Not enter fields/paddocks/pens which contain cattle
- Not to handle cattle

Contents

- 1. Management and performance of the Derrypatrick herd in 2013.
- 2. Performance of the yearling and finishing animals in the Derrypatrick herd.
- 3. Financial aspects of the Derrypatrick herd
- 4. Feeding options for the upcoming autumn/winter
- 5. Management and performance of the New Maternal Index herd
- 6. Land drainage on the Derrypatrick unit

Management Details

Turnout to pasture:

- Cows turned out Feb
- Weanlings turned out in Mar but were re-housed
- Heifers and steers returned to pasture in May
- Bulls remained indoors

Grass growth:

Poor pasture growth in Spring

Cows were supplemented with 2 kg concentrates at pasture in March & April

Silage area:

- 26 hectares in first cut (%)
- 21 hectares in second cut (%)
- 9.5 hectares surplus grass

Reseeding and drainage:

- ~4 km of drainage work was carried out in August (aiming to improve 8 hectares)
- 10.5 hectares was reseeded

Pasture Management

Aim:

Pre-grazing herbage yields = 1400 -1600 kg DM/ha (10-12 cm)

Post-grazing 4 cm

Early housing last winter

Consequences of poor pasture growth/ weather conditions:

Prolonged indoor period for weanlings last spring

Challenges/ difficulties

- Early weaning and housing last winter
- Late turnout for yearlings this spring (mid-May)
- · Lower carcass weights achieved from bulls than previous years

Positives this year

- · Greater weaning weights
- Improved reproductive efficiency
- · Adequate silage made to cover the winter period
- · Drained and reseeded land

Update on the Derrypatrick herd

COW PERFORMANCE					
	LIM× FR	LIM× SIM	CH× SIM	CH× LIM	
Number (n)	22	17	18	17	
Mean calving date	Mar 4	Mar 11	Feb 25	Mar 1	
Live weight at calving	580	630	656	667	
BCS at calving	2.44	2.56	2.50	2.61	
Calving score	1.69	2.53	1.72	1.62	
Calf performance (kg)					
Birth weight	47	49	48	50	
Current weight	255	227	241	232	
ADG (kg/day)	1.22	1.11	1.11	1.05	

REPRODUCTIVE PERFORMANCE					
	LIM× FR	LIM× SIM	CH× SIM	CH× LIM	
BCS at breeding	2.53	2.67	2.71	2.80	
CSI (days)	81	77	78	75	
CCI (days)	86	80	79	88	
Submission rate (21days; %)	44	55	77	74	
Pregnancy rate to first service (%)	75	85	85	63	
6 week in-calf rate (%)	72	89	95	83	
In-calf rate (%)	91	94	95	94	
No. of services per cow	1.23	1.21	1.48	1.42	
Expected calving date 2014	Feb 27	Feb 22	Feb 14	Mar 3	

Carbon footprint - good reproductive and live weight performance are critical factors.

Derrypatrick Herd: Post-weaning progeny performance

Winter Diet:		HEI	FERS			ST	EERS	
Grass silage +		Dam Br	eed Type			Dam Bro	eed Type	
1.5 kg Concentrate/d	<u>LIM×FR</u>	<u>LIM×SIM</u>	<u>CH×SIM</u>	<u>CH×LIM</u>	<u>LIM×FR</u>	<u>LIM×SIM</u>	<u>CH×SIM</u>	<u>CH×LIM</u>
<u>Live weight (kg)</u>								
Weaning	287	277	271	232	317	270	275	280
Housing (Nov 8)	292	281	276	240	321	272	280	286
Turnout (May 15)	364	347	347	304	411	368	356	369
Grazing (June 5)	373	365	364	317	410	374	360	372
(Aug 28)	454	445	442	390	507	464	451	461
Average daily gain (kg)								
1 st winter	0.38	0.39	0.35	0.34	0.48	0.51	0.41	0.44
June 5–Aug 28	0.97	0.96	0.93	0.87	1.18	1.07	1.08	1.06

Derrypatrick Herd: <u>Post-weaning</u> progeny performance

		BULLS					
		Dam Breed Type					
	<u>LIM×FR</u>	<u>LIM×SIM</u>	<u>CH×SIM</u>	<u>CH×LIM</u>			
<u>Live weight (kg)</u>							
Weaning	293	278	293	255			
Housing (Nov 8)	299	280	297	249			
Finishing (May 15)	417	371	403	375			
(Aug 28)	694	616	615	603			
<u>Average daily gain (kg)</u>							
1 st winter	0.63	0.48	0.56	0.67			
Finishing (May 15–Aug 28)	2.21	2.33	2.02	2.17			

DIET

First Winter Grass silage to appetite + 2.0 kg concentrate/day

Finishing Period Concentrates ad libitum + Grass silage (restricted)

Bull slaughter & carcass data will be presented at the Open Day

Breed Cow Comparison of the Derrypatrick Herd

•Farm system with 120 cows & progeny to finish on 70 ha

- Feed requirements: ~10 t DM herbage/ha; ~0.5 t concentrates/LU
- Beef live weight output ~1160 kg/ha. LF [↑] Progeny beef; CL [↑]Cull beef; CS, LS intermediate

	Limousin Fries (LF)	X Hol-	Limousin mental (LS	X Sim- S)	Charolais mental (C	X Sim- S)	Charolais sin (CL)	X Limou-
Progeny of mature cows	Male	Fem	Male	Fem	Male	Fem	Male	Fem
Weaning weight (kg)	340	315	304	280	304	281	273	274
Slaughter weight (kg)	717	606	691	585	699	589	656	571
Killing out rate (%)	59.6	54.2	60.4	56.1	60.0	54.3	60.3	56.7
Carcass weight (kg)	425	328	417	327	418	319	398	325
Live weight per day of age (kg)	1.24	1.00	1.20	0.96	1.21	0.97	1.14	0.94
Carcass conformation (1-15)	U=	R=	U=	R+	U=/U+	R=	U=/U+	R+
Carcass fat (1-15)	2+	3=	2+	3=	2+	3=	2+	3-

Cow				
Live weight post calving (kg)	560	600	630	630
Pregnancy rate1	0.91	0.87	0.91	0.84

System2				
Average cow numbers	109	106	109	103
Herbage utilised (t/ha)	10.3	9.9	10.0	9.7
Concentrates fed (kg/LU)	559	542	538	540
Progeny output (kg carcass/ha)	604	596	591	578
Cull output (kg carcass/ha)	56	77	63	93

1Number of cows pregnant as a percentage of cows bred. 2Assuming 120 cows calving on 70 ha for each breed type.

•Production systems must be sustainable so that current practices do not undermine future potential

- Carbon footprint research farm systems 20% lower than national average
- Nutrient efficiency optimise use of slurry and fertilisers; clover at lower stocking rates

	Limousin X Hol- Friesian (LF)	Limousin X Simmen- tal (LS)	Charolais X Simmen- tal (CS)	Charolais X Limousin (CL)	Average
Progeny beef sales	2,539	2,522	2,502	2,458	2,505
Cull beef sales	198	271	223	330	255
Less heifer purchases	306	473	370	549	424
Gross output	2,431	2,327	2,355	2,253	2,341
Variable costs					
Concentrates	460	447	442	447	449
Fertilizers	250	238	245	233	241
Contractor	211	213	219	210	213
Other feed costs	208	206	211	202	207
Other variable costs	162	166	162	169	164
Total Variable costs	1,291	1,269	1,279	1,260	1,275
Gross margin	1,140	1,057	1,075	993	1,066
Gross margin (2013 prices)	1,202	1,149	1,146	1,095	1,148
Net margin	630	549	569	484	558
Net margin (2013 prices)	692	640	640	586	640

1Economics are based on prices in 2012 (final year of "Phase 1" of the Derrypatrick Herd): Beef price (R3), €4.05/kg carcass. Concentrates, €350/t. Urea, €400/t. CAN, €310/t. Gross and net margins are also given for 2013 prices.

	2011	2012
Output		
Progeny beef sales	2,133	2,424
Cull sales	404	757
Total sales	2,537	3,181
Heifer purchases	270	5181
Inventory change	46	-6292
Gross output	2,313	2,035
Variable costs		
Concentrates	385	5793
Other feed	501	4324
Vet/med	198	102
Other	76	71
Total variable costs	1,160	1,183
Gross margin	1,153	851
Estimated fixed and overheads	539	652
Net margin	614	199

1Heifer purchase prices increased considerably in 2012 relative to 2011. 2The negative inventory change in 2012 was due to a lower than anticipated pregnancy rate (82%) following a very difficult summer. This was partially offset by higher cull sales. 3Higher concentrate feeding due to longer indoor feeding periods for finishing cattle. 4Purchased forage costs were offset by a substantial reduction in silage contractor costs due to a smaller area harvested in 2012.

Feed Options for Finishing

Ration Specification

High Energy Low protein Minerals & Vitamins **ion** 0.92-0.94 UFV

11-12%

Sample Rations

Grange Mix (0.96 UFV)	%
Barley	87.5
Soya	6.75
Molasses	4.75
Minerals	1.5
Kildalton Mix (0.94 UFV)	%
Barley	57.5
Soya hulls	12
Distillers grains	23
Molasses	5

Suckler Cow Feeding

Spring Calver	Silage Required
72 DMD	Restricted (80% of intake)
65 DMD	Fed to appetite
60 DMD	To appetite + 0.5-1 kg meals
Restricted silage	20 kg silage + 3.0 kg meals

Autumn Calver (Pre-mating)	
72 DMD	Ad lib silage +1.8 kg meal
66 DMD	Ad lib silage +2.5 kg meal
60 DMD	Ad lib silage +3.0 kg meal
	Autumn Calver (Pre-mating) 72 DMD 66 DMD 60 DMD

Consider cow condition + mineral supplementation

Feeding Weanlings

DMD	Poor (62%)	Average (68%)	High (72%)
ADG = 0.6 kg	2.5	2.0	1.0

1. Feed meals pre-housing

- 2. Minimum gain needed to avoid stunting growth ~ 0.25 kg ADG
 - 1. The feeding rates above can be reduced by 0.5-1.0 kg for 0.4 kg LW gain, which may be adequate IF animals are turned out early
- 3. Batch weanlings target higher meal feeding rates at lighter animals.
- 1. Don't over-rely on compensatory growth
- 2. Early turnout is as critical as meal feeding

Age at first calving is an important factor influencing the carbon footprint of beef

Contact Details:

Teagasc Animal & Grassland, Research and Innovation Centre, Grange, Dunsany, Co. Meath. Tel: +353 (0) 46 906 1100 Email: info@teagasc.ie

www.teagasc.ie

