

 $A_{\rm GRICULTURE \ AND} \ Food \ Development \ Authority$

CROPS & CULTIVATION 2017

Teagasc & Irish Farmers Journal

Oak Park, Carlow

Wednesday 28th June 2017

www.teagasc.ie

Foreword

Teagasc Oak Park Crops and Cultivation 2017

Welcome to the Teagasc Oak Park crops open day, where Oak Park researchers and Teagasc colleagues are pleased to be able to show the latest technical innovations on a range of crops including; winter and spring barley, winter wheat, oats, oilseed rape and beans. The focus on these crops, presented over a number of stands, will include; pest, weed and disease control strategies, efficient fertiliser use, precise agronomy strategies such as sowing dates and seed rates and work to develop improved varieties suited to our climate. Up and coming new varieties will also be demonstrated by the DAFM variety testing team.

The Teagasc crops research programme will be the main focus; however, there will be many other areas of relevance to tillage farmers and the farming industry in general, including:

- Farm safety for farmers and families highlighting the dangers for bystanders with very large machines.
- Cultivation and sowing will be the focus of an 'event within an event' supported by the Irish
 Farmers Journal, and with input from some of our soil experts based in Johnstown Castle. There
 will be two working demonstrations of a range of crop establishment systems and a static display
 of controlled traffic systems. There will also be a wide range of other machinery on display from
 manufacturers and dealers, something for everyone, not just the specialised tillage farmer.
- Field margin management and enhancement of natural pest predators, to try and minimise the impact of loss of insecticide products.
- Catchment management to enhance water quality.

The route enables you to pick out areas of interest so you can start and stop your tour wherever you wish, a map is provided in the centre of the booklet to help you find your way.

I hope you have an enjoyable day; one which will enhance your knowledge and will be beneficial to your business. A lot of effort goes into the research programme to make it relevant and useful to the industry and I wish to thank the Teagasc tillage stakeholder group for the time and effort they devote to this on behalf of the sector. Many of the stakeholder group (listed overleaf) will be on-site today and would be happy to discuss ideas with you that you think are worthy of future research or knowledge transfer activity.

John Spink Head of Crops Research Teagasc

Tillage Stakeholder Group Members

Mr Donal Fitzgerald	Goldcrop (Chairperson)
Mr Richie Hackett	Crop Consultant
Mr Paddy O'Toole	Quinns of Baltinglass
Mr John Greene	Farmer, Co. Kildare
Mr Donal Coleman	Department of Agriculture Food & the Marine
Mr Andy Doyle	Crops Editor, Irish Farmers Journal
Mr John Keogh	Irish Agricultural Supply Industry Standards
Ms Maria O'Toole	Glanbia
Mr Willie Masterson	Farmer, Co. Wexford
Mr Stephen Collins	Farmer, Co. Cork
Mr Stuart Wallace	Farmer, Co. Offaly
Mr Pat Ryan	Liffey Mills
Mr Ollie White	Farmer, Co. Dublin

BYDV Control

Barley yellow Dwarfing Virus is spread by Aphids

Risk Factors:

- Early sown autumn crops / late sown spring crops
- Mild winters (Aphids overwintering)
- Mild Autumns (Aphid migration period lengthened)

	Au	tumn cereals
Sowing date	BYDV Risk	Control Action
Early sown (Sept)	High	Seed treatment & Pyrethroid aphicide in Nov Or Aphicide at 2/3 leaf stage & 1 st week Nov
Oct sown	Medium to high	Seed treatment <u>Or</u> Pyrethroid aphicide 1st week Nov
Emerging after Nov	Low	Control needed in mild winters where aphids are plentiful or in risk areas
		•
	Sp	ring cereals
Sowing date	Sp BYDV Risk	ring cereals Control Action
Sowing date March sown	Sp BYDV Risk Low	oring cereals Control Action Aphicide spray may not be necessary
Sowing date March sown April sown	Sp BYDV Risk Low Medium to high	ring cereals Control Action Aphicide spray may not be necessary Pyrethroid aphicide at 4 leaf

Notes:

-

BYDV Control

Winter barley, Cassia sown 3rd October, Carlow

'Knock Down Resistance'

'Knock Down Resistance' or 'KDR' was first identified in the UK in 2012 and in Ireland 2013

- Aphids with 'kdr' gene are less susceptible to pyrethroids
- To date, 'kdr' has only been identified in Sitobion avenae (Grain Aphid), an important vector of Barley Yellow Dwarfing Virus (BYDV)
- A single clone of *Sitobion avenae*, SA3 is associated with pyrethroid resistance
- Research indicates aphids carrying the resistance gene occur in all major grain growing regions
- When exposed to full rate applications of pyrethroids, approx. 40-50% of *Sitobion avenae* with the resistance gene will survive to at least 12 days post exposure
- Individual aphids exposed to full rate applications of pyrethroids continue to produce new nymphs post insecticide exposure

Ecological Focus Areas

Potential Benefits of EFAs

For the Farmer

- Enhanced crop pest control (natural predators)
- Increased pollination
- Decreased soil erosion.
- Prevention of soil nutrient leaching

For Biodiversity

- Increased species diversity.
- Increased habitat and landscape diversity
- Maintenance of 'wildlife corridors'

Social & Tourism

- Public goods (Ecosystem Products and Services)
- Maintenance of historical features and heritage
- Clean, green image

Fig 1: Hedgerows are the primary EFA on Irish tillage farms, accounting for 68% of eligible EFAs

Fig 2: Drains are widespread and make up 10% of EFAs in Ireland

Fig 3: Buffer strips constitute 9% of EFAs in Ireland

Fig 4: Fallow land is less common, constituting only 2% of EFAs in Ireland

Fig 5: Field Margins are eligible under EU prescriptions but not under Irish regulations, despite occurring in over 80% of tillage farms

julie.larkin@teagasc.ie

Sitobion avenae- grain aphid spreads BYDV, feeds on grain heads and can become resistant to pesticides

- Hoverfly larvae eat aphids as well as other soft bodied pests. Each can consume up to 1,200 aphids.
- Lacewing larvae eat aphids. Number consumed by each larva varies but can exceed 1,500
 - r **A A A A A**
- Ladybird larvae eat aphids

 Parasitoid wasp larvae keep the aphid alive and feed on it until they are fully grown. They then exit the aphid's body, killing it.

Robyn.Earl@Teagasc.ie

Natural Enemies of Aphids For IPM

Wildlife habitats such as field margins support a variety of predators of aphids

- Adult hoverflies feed on pollen and nectar from flowers
- Larvae and adults hibernate
- Lacewing adults feed on pollen and lay eggs near aphid colonies
- Adults hibernate
- Adult ladybirds eat aphids and lay their young near aphid colonies
- Adults Hibernate
- Adult Parasitoid wasps attack and lay their eggs inside aphids and repeat the cycle

Notes:

9

	agasc	ow Fa	rmers	Can Help Bees
Why are Pollina rape, pe Pollina Green Produc	e bees importan tion of food crops eas, beans, apples, s tion of wildflowers image for Irish foo ction of honey	nt? :: oilseed soft fruit s, trees od	Irish Bee species A hyper state of the species A hyper state of the species Honeybee (1)	Allow space for a diversity of flowers to grow and flower along farm roadways around farmyards field margins field corners
 Why bee Reducting provides carbohyd Lack of need foor flowering Less need foor flowering 	s are declining on in flowers: Polle protein and nectar drate. continuity of flowed d all year round - a co plants in the lands sting sites	? en provides ers: Bees diversity of cape.	Solitary bees (77)	Field Margins • Fence off from livestock • Cut or graze after flowering • Do not fertilise • Do not spray Routinely trimmed hedgerows • Side trim to a triangular shape
January	Trees / Shrubs Willow Hazel Blackthorn Holly Crab apple Whitethorn Gorse/furze /whins	Climbers Dog rose Honeysuckl Blackberry Ivy	Wildflowers Primrose Bluebell Dandelion Clover Vetches Knapweed Heather	 Leave as high as possible. Allow individual thorn trees mature at irregular intervals Allow wildflowers grow at the base Image: Allow wildflowers grow at the base
				If spraying insecticides in crops Spray early morning or late evening when honey bees are less active Notify local beekeepers

Oats – Nitrogen Timing

Winter Oats

- Timing of N applications to winter oats is not critical if N is applied by GS32
- How N is split is relatively unimportant compared to the rate of N application

Spring Oats

- Timing of N applications to spring oats is not critical if N is applied by GS30
- How N is split is relatively unimportant compared to the rate of N application

Winter Oat Seeding Rates

Green light ·····> Near infra-red

Crop Reflectance

Principles of light reflectance used by crop sensors

- During photosynthesis crops absorb more red and blue light than green light
 - · More green is reflected
- More (and greener) leaf means
 - more photosynthesis
 - · more absorption of red and blue light
 - · less reflection of red and blue
- Near infra-red light is reflected by crop structures, more crop = more NIR reflection
- Reflectance of different wavelengths of light gives information on crop canopy size and 'greenness' which can relate to crop nitrogen status/requirement

BUT

 Factors other than N affect reflectance (drought, non-N nutrient deficiencies, spray damage.....)

Issues

Sensor readings tend to saturate at high crop N levels

- reflectance better for quantifying N deficiencies than excesses
- How much N is required to correct deficiency?
 - What about N remaining in the soil?

If a crop is deficient has yield been lost?

Can Sensors Improve N Advice?

Fertiliser N requirement is variable,

- between sites and seasons
 - within sites

Response to N is influenced by:

- Yield (Actual vs historic)
 - Soil N supply
 - Fertiliser N recovery
- All difficult to predict early in season (with accuracy)

Can the crop indicate N requirement during the season?

Crop N status related to biomass + N content

- both can be determined with samples in a lab
- allows detection of deficiency / excess
- not practical at farm level

Indirect methods can be used e.g. crop reflectance sensors

- more practical
- optimum timing for measurements?
- ability to identify correct rate of N?
- suitability for Irish crops?

Sensor platforms

Crops & Cultivation 2017

- The yields from all three fertiliser nitrogen options were similar
- Protected urea will safeguard against reduced yields which could occur with ordinary urea under weather conditions favouring ammonia loss

Spring Barley Disease Management

Management Strategy

1. Variety \rightarrow 2. Sowing date \rightarrow 3. Fungicide timing \rightarrow 4. Fungicide choice

3. Timing

1st application: mid-late tillering

2nd application: awn emergence

No benefit from additional applications

Current Fungicide Resistance Status for Barley Diseases

Varying levels of fungicide resistance now present in main diseases of barley

commune

Ramularia collo-cygni

Pyrenophora teres

Qol/StrobLow (G143A 2014 in Ireland)High (Resistance widespread in Irish populations)Moderate resistance present (F129L & G137R)AzoleLow (shifts detected prothioconazole not affected)Moderate resistance Moderate resistanceLow resistanceSDHINo resistance detected (as of yet)Moderate (Resistance widespread Europe)Moderate (resistance detected in Europe)	Fungicide	Rhynchosporium Commune	Ramularia collo-cygni (Chlorothanil essential)	Pyrenophora teres
AzoleLow (shifts detected prothioconazole not affected)Moderate resistanceLow resistanceSDHINo resistance detected (as of yet)Moderate (Resistance widespread Europe)Moderate (resistance detected in Europe)	Qol/Strob	Low (G143A 2014 in Ireland)	High (Resistance widespread in Irish populations)	Moderate resistance present (F129L & G137R)
SDHI No resistance detected (as of yet) Moderate (Resistance widespread Europe) Moderate (resistance detected in Europe)	Azole	Low (shifts detected prothioconazole not affected)	Moderate resistance	Low resistance
	SDHI	No resistance detected (as of yet)	Moderate (Resistance widespread Europe)	Moderate (resistance detected in Europe)

Winter Barley Agronomy: Two and Six-Row

Hybrid six-rows are becoming increasingly popular The yield components are very different from two-row Should they be treated the same?

Two and six row yield components

	Ears.m ⁻²	Grains.ear ⁻¹	Grains.m ⁻²	TGW (g)
Two-row	1028	18	18750	57.7
Six-row	728	36	26030	40.9

Does increasing seed & N rate increase grain no.?

- No yield increase from increasing seed & N rate in either a two or a six-row variety
- Possibly due to increased lodging at the higher seed & N rate

Does fungicide timings need to change due to row type?

- Each row type responded the same to fungicide timing
- Conventional two-row out yielded hybrid six-row

Key traits for identifying grasses

- Auricles/Ligules
- Hair on the leaves/stem/nodes
- Presence of rhizomes
- Colour of leaves
- Head structure

Early identification is the first and most important step in grass weed control

Different weeds require very different control strategies

Spring germinating weeds like wild oats and lesser canary grass pose different problems than winter germinating species

Lesser Canary Grass

- Pale, broad green leaves
- Red sap in the root tips
- No auricles
- Tufted seed spike
- Can remain dormant in soil for extended periods

Grass Weed Identification

Wild Oats

- Hairy stems and leaf margins
- No auricles (unlike Wheat and Barley)
- Sturdy, upright growth
 Dark coloured bains
- Dark coloured, hairy seeds, arranged in a loose panicle with awns

From L-R: Wild oats, wheat and barley auricles

Grass Weed Identification

Sterile brome, soft brome and black grass are all predominantly Autumn/Winter germinating Including spring crops in the rotation is a useful control measure for Autumn/Winter germinating weeds

Sterile Brome

- Hairy stems
- Red striping at the base of the stem
- Loose, drooping panicle
- Seeds have long awns, arranged in a wedge-shaped spikelet

Black Grass (Mature)

- Too late for effective control at this stage
- Seed heads similar to Timothy or Foxtail, only longer and more slender
- Heads can range in colour from deep purple to green
- Very upright growth

Soft Brome

- More upright growth than sterile brome
- Seeds tightly arranged in an oval shaped spikelet with shorter awns
- Compact panicle with short branches
- Spikelets are hairy

Black Grass (Young)

- Early identification is key
- Red colour at the base of the stem. Long, slender dark green leaves
- Lacks auricles
- Excellent tillering capacity

Herbicide Resistance and Black Grass

Herbicide resistance is the ability of a plant to survive a dose of a herbicide that would normally be lethal.

- Grass weeds screened for resistance to 4 common herbicide active ingredients using full rates
- Wild oats populations found with resistance to one or two active ingredients
- Black grass populations found with resistance to all active ingredients
- If you see black grass on your farm, or suspect herbicide resistance, contact Teagasc to have your weeds screened for resistance

Key steps to identifying resistance on your farm:

- 1. Was spraying carried out in correct weather conditions?
- 2. Was the herbicide applied at the correct rate?
- 3. Has good coverage of all tillers been achieved?
- 4. Are live, uncontrolled plants present in proximity to dead ones?

Black grass head

	Virtual Irish Centr	<pre>➢√ICCI re for Crop Improvement</pre>
Six Crops	Four Challenges for	or Irish Agriculture
	 Nutrient Use Efficiency Understand the genetics of NUE in breeding germplasm Develop high energy, low-N grain for monogastric feed Reduced N emissions and crop nutrition costs 	 Disease Resistance Need Irish-adapted varieties resistant to STB and FHB Identify germplasm, genes and markers associated with resistance Provide tools and information to breeding companies
	 Abiotic Stress Tolerance Low temperatures and flooding can limit productivity Investigate breeding germplasm using combined "omics" and field approach Develop tools for breeding stress tolerant varieties 	 Import Replacement Beans - potentially useful break crop and could help replace soy meal 50K tonnes of potatoes for processing imported annually Develop genomics driven breeding for these crops
Research Stimulus Fund Project 14/S/819	University College Dublis NUI Galway Definite Claba University	MAYNOOTH The University of Dates

Objective:	90 ST	B on flag leaf
Identifying the genetic basis of Disease resistance to Septoria 	80 -	
 Maintaining grain yield under disease infection 	70	
Last vear:	60 -	
 More than1,000 MAGIC genotypes screened for STB disease resistance 	§ 50	A LAND
Large variation in resistance foundSome progenies more resistant than	81S 40	Soissons
any parent	30	Hereward
Currently: • 200 genotypes selected	20	Robigus Brompton Claire
 Untreated plots: to determine STB resistance 	10 -	Xi-19
 Fungicide protected plots: to determine yield potential 	0 1	MAGIC Parents enotypes

Oilseed Rape Establishment

Systems evaluated

- Plough-based establishment
 - 125mm and 600mm rows
- Min-till establishment
 - 125mm and 600mm rows
- Strip tillage (Heva)
 - 600mm rows
- Row widths 125 to 750mm evaluated
- 3 years: varying yield potential sites

Performance summary

- All systems could successfully establish OSR crops
- Row widths up to 600mm had little impact on crop development and yield.
- Where yield potential was high, very wide rows (750mm) could limit the crop.
- N response was similar across establishment systems
- There is scope to exploit faster and lower cost establishment systems

Beans Agronomy

Disease	Chocolate spot biggest threat. Spray at early flowering and repeat 2 – 3 weeks later Signum, Rover 500, Fezan Plus, Amistar Ascochyta and Downy Mildew also of concern	
Pests	Bean weevil cause U shaped notches on leaves. Larvae feed on roots and can cause substantial damage to young crops. Apply insecticide if notching seen across field Black bean aphid: only spray if greater than 5% of plants infested	
Harvest	Late August – Mid September Aim for 18% moisture content	
		IFA Grain Levy Funded Research

Time of Sowing and Seed Rate

Field Trials:

- Impact of sowing date and seed rate on crop growth, canopy development and dry matter accumulation
- 6 sowing dates from October to April
- 5 seed rates 10, 20, 40, 60 & 80 seeds per m²
- 2 varieties Fuego (Spring) & Wizard (Winter)

20 seeds/m² (left) vs 80 seeds/m² (right)

Considering Afforestation?

Potato Breeding Scheme

Teagasc Bred Varieties

Main Potato Diseases

Traits, Selection and Technology

Otherwise
 <u>http://www.pcs.agriculture.gov.ie/sud/sudreg/</u>

52

www.indexner.org.collien/22/09 GdwGrost of Hybrider Museum

Testing of Pesticide Application Equipment

Since 26th November 2016

- All boom sprayers > 3m and blast and orchard sprayers over 5 years old must be tested before use
- Farmer's responsibility to ensure sprayer is tested
- · Test cert remains with sprayer if sold
- Tested every 5 years up to 2020
- Tested every 3 years after 2020
- Must be tested by a DAFM-registered Inspector of Pesticide Application equipment <u>http://www.pcs.agriculture.gov.ie/sud/equi</u> <u>pmentinspectors/</u>
- · Knapsack sprayers are exempt

Better Farm Programme

Focus on Precision Farming

"How to achieve maximum field performance through Smart farming"

John Collins Key	vin Nolan Derek Keeling Hi-tech precision tools
 Develop a toolkit to identify and manage soil variation Focus on soil characteristics and nutrition Role of organic manures & catch crops Measure performance against crop benchmarks 	 Use of specialist tools to aid decisions Role of hi-tech precision equipment Focus on crop recording and record keeping Evaluate new technologies on farm

Safety in Tight Spaces

Hazards:

- Poor visibility close to tractors/ large machines: Bystander risk
- Entrapment at hitching
- Entrapment/impacted by parked machine moving
- Entrapment between machine and buildings/structures

Reducing the Risks

Visibility solutions

- Clean windows, good mirrors, good lighting
- Blind-spot awareness
- People position awareness
- Good operator practice: stop and check
- Good yard design
- Reverse warning beeper
- 360 degree overhead view camera system

Secure handbrake and transmission lock

- Quick attach couplings and safe external linkage control
- Safe implement hitching routine:

stand under loads w

- Implement parked safely
- · Methodical safe approach to implement attachment
- Avoid entrapment when linkage is used
- · Particular care when two people involved
- Use chocks/ trailer handbrake if trailed equipment must be

thout secondary safety

parked on slopes

Soil Cultivation

Why Cultivate?

- Create seedbed
- Retain moisture & provide drainage
- Control weeds
- Incorporate residues
- Seed placement

System Impacts on:

- Crop establishment and growth
- Power, energy, labour, costs
- Soil and structure
- Weeds: grass and broad leaved
- Pests, beneficials (earthworms)
- Diseases
- GHG emissions

Oak Park Research

Machinery costs

Spring Barley

Challenges

- Grass weeds (Winter + Spring)
- Wet autumns (Winter)
- Slow establishment (Spring)
- Better management

Soil Structure Damage

Threats

- Heavy machinery
 - Excessive axle loads
 - Inadequate tyre size
- Continuous annual cropping
- Working in wet conditions

Solutions

- Avoid wet conditions
- Reduce cultivation intensity (stronger soils)
- Reduce axle loads
- Fit larger tyres
- Lower tyre pressures
- Headland management
- Controlled traffic systems

Identifying the problem

- Examine your soils
- Visual soil assessment techniques

SQUARE

Soil Quality Assessment Research Project

Soil Quality impacts on crop productivity and other soil functions

Objectives

- Evaluate the status of soil structural quality in Ireland
- Assess impact of soil structural degradation on functional capacity of soil
- Develop a toolbox for farmers to assess structural quality

SQUARE How?

Field campaign – 160 grassland and tillage sites over three years

SQUAR

Farmer surveys to assess ranges in soil management practices

Outputs

- Visual Soil Assessment for Irish soils and in-field toolkit for farmers.
- Knowledge and scientific understanding to facilitate improved management practices

SQUARE supports the co-existence of environmental sustainability with increased food outputs

Two Arable Catchments Two different soil profiles

Crops & Cultivation 2017

Controlled Traffic Farming

What is CTF?

- Limiting wheeled traffic to discrete areas
- Avoiding compaction / structure damage
- Alternative approach to massive tyres for heavy machinery
- Most suited to, and beneficial to, non-plough systems

Benefits

- Depends on system, site, crops and trials
- Reduced compaction, improved porosity
- Reduced power requirement ~ 50%
- Yields variable: 0 to 35% improvement

CTF Systems - original

- Gantry system, permanent paths
- Expensive, poorly developed
- Main concept prior to GPS
- Some interest for high value crops

CTF Optimove Project

EU project (ICT Agri Eranet)

- Focussed on developing CTF systems across Europe
- Irish component examining field headlands and soil sensors

Headland studies: Survey

- Headland 'Zones of difference' attributed
- Soil structure assessments in each zone
- Crop performance assessments
- Input application assessments
- Scope for improved headland management will be determined including CTF variants

Zone A: near border Zone B: most traffic Zone C: transition area Zone D: in field area

Notes:

Investigating Cost of STB Resistance

Background

Genetic resistance of cv. Stigg is being bred into new commercial varieties but little is known about the cost of this source of genetic resistance

Stigg

Kielder

Project goals

Comparing cv. Stigg against 9 other varieties-

- Investigate the impact of an extended latent period on field performance
- Understand in more detail the mechanisms that support the strong STB resistance trait of cv. Stigg in absence of fungicides

Data shows diversity of latent periods and % pycnidia from multiple strains on same variety

Take home messages

- Pathogenicity of STB strains very diverse
- Genetic resistance is valuable in a high disease environment
- Resistant cultivars must be balanced with fungicide use to maximize yield and preserve durability of STB resistance

This project has received funding from the European Union's Horizon 2020 research and innovation programme

Latent Period- A Factor That influences

Resistance To Septoria Tritici Blotch (STB)

What is Latent period?

Time it takes from STB landing on the leaf – to first sign of visible symptoms

Crops & Cultivation 2017

Fungicide Resistance

The 1, 2, 3 of Fungicide Resistance Management

- 1. Limit Number of Applications
 - 2. Use Effective Rates
 - 3. Mix Modes of Action

Biological

Physical/Mechanical

Cultural

Prevention

IPM Strategy

- Adopt good agronomic practices
- Monitor disease and resistance development
- Proper choice of application timing & fungicides

Host Adaptation in Septoria

What is Host Adaptation?

- Septoria has a very high *evolutionary potential*, and can adapt to break down resistance in important cultivars in < 5 years
- The reason for this is that Septoria is a highly sexual pathogen, capable of undergoing several sexual cycles per growing season

Implications

- Resistant cultivars are an effective and now essential strategy for control of septoria
- But resistance needs to be durable and risk of resistance breakdown minimized
- The more widely cultivated a resistant cultivar, the more rapidly its resistance is eroded

Wheat Disease Control

What: Fungicide mixtures of different MoA including multisites Know the target - Know the timing - Know the fungicide

EPIC – IPM

Establishing a platform for IPM in Irish crops

Determining potential for IPM in Irish crops

- Detailed surveys of specialised arable, potato and horticultural systems
- Comparison of Irish practises to those used elsewhere in north-western Europe

Adapting IPM strategies to suit Irish needs

- Evaluating DSS optimised elsewhere in north-western Europe for Irish crops
- Model pest/pathosystems selected

Ramularia in barlev

Potato late blight

Cereal aphids

Carrot root fly

Knowledge Transfer

Utilising most effective means to communicate research findings

