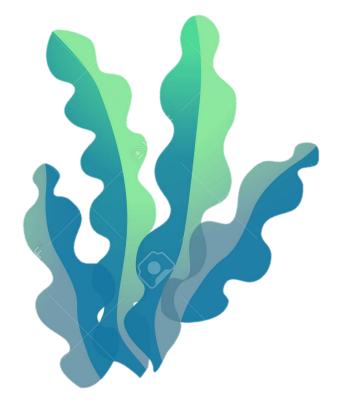


Assessment of the impact of extraction technologies on prebiotic saccharides

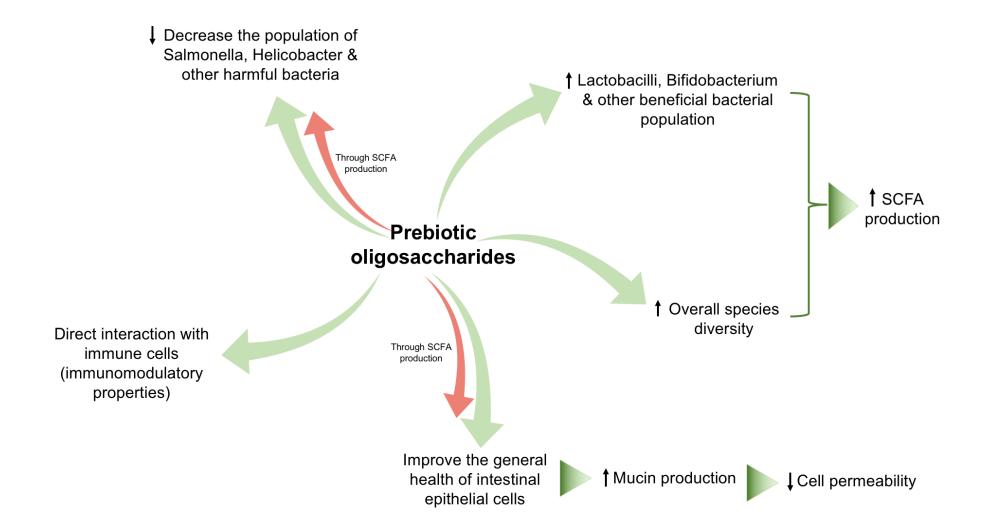
Dr. Beth Mason

CEO, Verschuren Centre

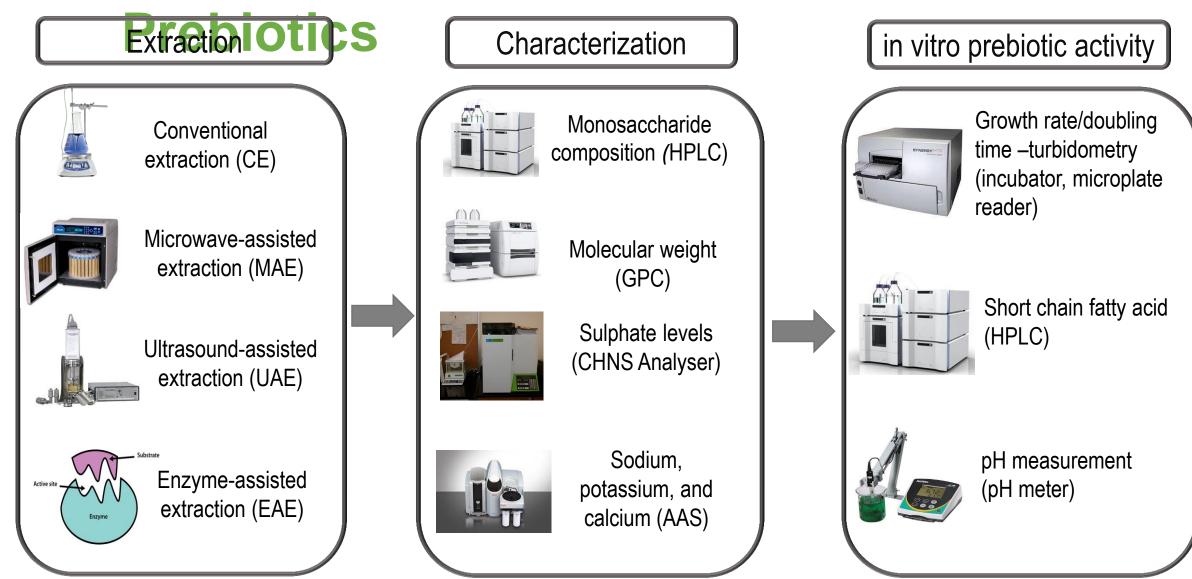
The Marine Ecosystem


- The ocean makes up about 70 % of the earth's surface and is home to a diverse range of marine life
- Underutilized marine macroalgae contain several active compounds that can be converted into value added products
- > Food, feed, pharmaceutical and other industrial applications
- One group of such active components are polysaccharides from seaweeds with healthpromoting prospects

- Why Seaweeds


> Large group of marine multicellular algae: 1500–2000 species

- Abundant on the Atlantic (east) coast of Canada, aswell as the coast of Ireland
- Brown seaweeds contain a number of polysaccharides laminarin, fucoidan, and alginate
- Prospective prebiotic for application as functional food ingredient/dietary supplement


Ascophyllum nodosum – Rich source of fucoidan and alginate and are commercially viable

- Prebiotics and Gut Health

Extraction and Characterizations of

Structure-function relationship between fucoidan extracts from Ascophyllum nodosum and in vitro prebiotic activity: Assessment of the impact of extraction technologies

– Abbreviations of Fucoidan Extracts

Fuc-CCEFucoidan extracted from conventional chemical extractionFuc-MAEFucoidan extracted from microwave-assisted extractionFuc-UAEFucoidan extracted from ultasonication-assisted extractionFuc-EAEFucoidan extracted from enzyme-assisted extraction

Structural Properties of Fucoidan

Extracts

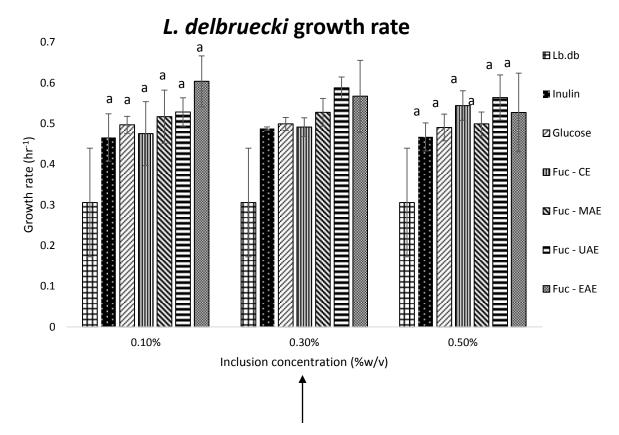
	Extract yield (%w/w of pre-extracted		de composition	Sulphate content (%w/w of fucoidan extract)
	A.nodosum)	Fucose	Galactose	
Fuc-CCE	11.9 ± 2.93	27.4 ± 3.27	6.56 ± 0.92	21.7 ± 1.71
Fuc-MAE	5.7 ± 1.01	37.0 ± 6.82	13.0 ± 4.08	18.8 ± 0.39
Fuc-UAE	4.56 ± 0.63	27.1 ± 2.04	8.53 ± 0.85	17.3 ± 2.18
Fuc-EAE	3.89 ± 0.55	29.1 ± 1.42	10.6 ± 1.06	15.4 ± 1.49

Fuc-CCE had significantly higher yield and sulphate than other extraction methods

Trend: Fuc-MAE had higher monosaccharide content (no statistical significance)

Structural Properties of Fucoidan

Extraction method	Component	Number average molecular weight, Mn (kDa)	Weight average molecular weight, Mw (kDa)	Polydispersity index (Đ)	Peak area
Fuc- CCE	Peak 1	40.2 ± 3.57	97.5 ± 7.80	2.47 ± 0.29	318.3 ± 144.6
	Peak 2	2.62 ± 0.12	2.79 ± 0.16	1.07 ± 0.01	12.05 ± 6.72
Fuc - MAE	Peak 1	30.8 ± 1.99	81.2 ± 8.07	2.64 ± 0.19	335.3 ± 116.2
	Peak 2	2.55 ± 0.08	2.86 ± 0.10	1.12 ± 0.007	40.3 ± 13.6
Fuc - UAE	Peak 1	121.1 ± 3.94	136.3 ± 4.39	1.13 ± 0.07	239.6 ± 65.6
	Peak 2	2.58 ± 0.07	2.70 ± 0.05	1.05 ± 0.008	57.5 ± 17.9
Fuc- EAE	Peak 1	100.1 ± 15.3	115.2 ± 8.87	1.16 ± 0.09	227.4 ± 108.7
	Peak 2	2.57 ± 0.02	2.73 ± 0.02	1.07 ± 0.002	27.62 ± 21.6

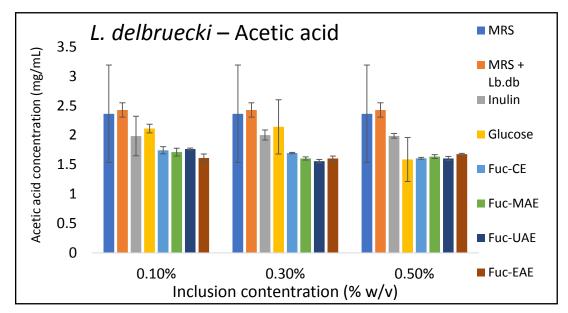

Mn provides information on the statistical average of all polymer chains within a sample, whereas Mw accounts for the molecular size of the sample

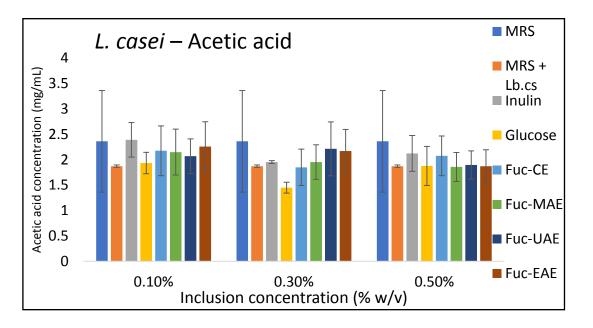
Fuc-MAE had the lowest molecular weight (both Mn and Mw), where as Fuc-UAE had highest molecular weight Microwave extraction possibly resulted in partial hydrolysis generating lower molecular weight extracts

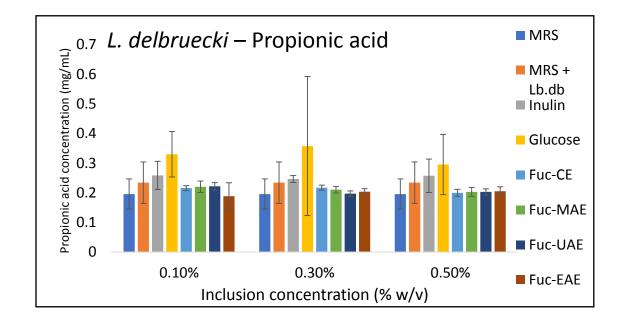
Prebiotic Activity of Fucoidan Extracts

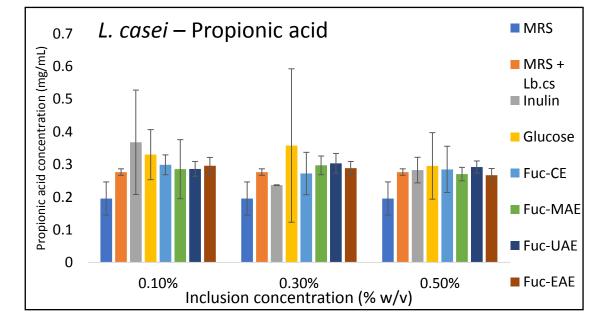
Extraction Method	<i>L. delbruecki</i> doubling time (hr)			<i>L. casei</i> doubling time (hr)				
	MRS+Lb.db	0.1%	0.3%	0.5%	MRS+Lb.cs	0.1%	0.3%	0.5%
Inulin		3.031 ± 0.298	2.888 ± 0.558	2.806 ± 0.479		2.171 ± 0.291	2.051 ± 0.017	2.149 ± 0.157
Glucose		3.057 ± 0.339	2.863 ± 0.267	2.960 ± 0.486		2.015 ± 0.087	2.005 ± 0.063	2.046 ± 0.140
Alg-CCE	3.90 ± 2.19	2.03 ± 0.019	1.877 ± 0.187	1.597 ± 0.082	2.426 ±	2.080 ± 0.036	1.927 ± 0.035	2.325 ± 0.064
Alg-MAE	5.90 ± 2.19	1.870 ± 0.091	1.934 ± 0.103	1.312 ± 0.044	0.239	1.726 ± 0.129	1.807 ± 0.210	2.693 ± 0.457
Alg-UAE		2.135 ± 0.066	2.349 ± 0.109	1.762 ± 0.240		1.953 ± 0.066	1.830 ± 0.099	2.494 ± 0.023
Alg-EAE		2.04 ± 0.128	2.152 ± 0.033	1.686 ± 0.036		2.071 ± 0.095	1.928 ± 0.162	2.724 ± 0.363

Prebiotic Activity of Fucoidan Extracts


L. delbruecki growth rate improved at 0.1% and 0.5% w/v but no significant difference in activity amongst the extraction methods


Fuc-MAE improved the growth rate of L. casei by 24.5% at 0.5% w/v 0.6 L. casei growth rate 0.5 ELb.cs 🖬 Inulin 0.4 Growth rate (hr⁻¹) Glucose 0.3 Fuc-CCE 0.2 S Fuc-MAE 0.1 E Fuc-UAE Fuc-EAE 0.10% 0.30% 0.50% Inclusion concentration (% w/v)


– Prebiotic Activity of Fucoidan Extracts


Extraction	Inclusion	Change in pH of <i>L. delbruecki</i>	Change in pH of <i>L. casei</i>
Method	concentration	media	media
MRS	-	-0.036	-0.036
L. delbruecki/L. casei	-	-1.275	-1.839
Inulin	0.1	-2.014	-1.876
	0.3	-1.984	-1.872
	0.5	-2.003	-1.927
Glucose	0.1	-2.010	-1.854
	0.3	-1.990	-1.877
	0.5	-1.996	-1.868
Fuc-CCE	0.1	-1.110	-2.314
	0.3	-0.987	-2.208
	0.5	-1.080	-2.216
Fuc-MAE	0.1	-1.419	-2.257
	0.3	-1.015	-2.143
	0.5	-1.150	-2.280
Fuc-UAE	0.1	-1.455	-2.277
	0.3	-1.103	-2.129
	0.5	-1.204	-2.171
Fuc-EAE	0.1	-1.261	-2.095
	0.3	-1.247	-2.114
Higher reduction in	the pH of extract su	pplemented mediethan blank contr	O -2.268

Short Chain Fatty Acid Production

The impact of extraction technologies on the structure-function relationship between sodium alginate extracts and their in vitro

prebiotic activity

– Abbreviations of Fucoidan Extracts

Alg-CCE	Alginate extracted from conventional chemical extraction
Alg-MAE	Alginate extracted from microwave-assisted extraction
Alg-UAE	Alginate extracted from ultasonication-assisted extraction
Alg-EAE/CCE	Alginate extracted from enzyme-assisted extraction

Alg - CCE	71.61 ± 4.263
Alg - MAE	56.35 ± 1.344
Alg - UAE	70.15 ± 3.953
Alg – EAE/CCE	90.32 ± 5.198

Alg-EAE/CCE had significantly higher yield than other extraction methods, whereas Alg-MAE had lower yield

Sodium alginate	Guluronic acid equivalent	Mannuronic acid equivalent
extracts	% (w/w of sodium alginate extract)	% (w/w of sodium alginate extract)
Alg-CCE	0.772 ± 0.150 ⁺	1.945 ± 0.357
Alg-MAE	0.334 ± 0.077 ⁺	0.905 ± 0.183
Alg-UAE	$4.099 \pm 0.390^*$	9.841 ± 0.926 ⁴
Alg-EAE/CCE	2.503 ± 0.651 [#]	6.053 ± 1.546 ⁴
Alg - STD.*	25.78 ± 3.227	61.32 ± 7.661

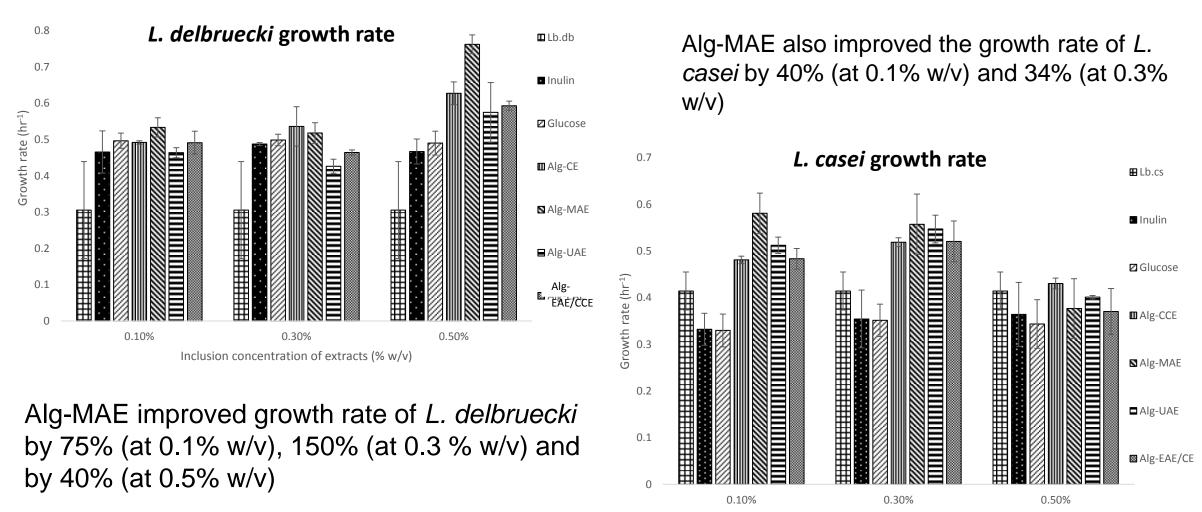
Low uronic acid equivalent values were observed compared to the commercial alginate

Extraction method	Component	Number average molecular weight, Mn (kDa)	Weight average molecular weight, Mw (kDa)	Polydispersity index (Đ)	Peak area
Alg-CCE	Peak 1	56.8 ± 4.17	103.4 ± 2.78	1.82 ± 0.09	80.92 ± 10.1
	Peak 2	4.19 ± 0.05	5.02 ± 0.1	1.20 ± 0.01	43.61 ± 24.1
Alg-MAE	Peak 1	46.9 ± 2.89	65.4 ± 9.29	1.40 ± 0.26	59.99 ± 23.55
	Peak 2	4.41 ± 0.36	5.03 ± 0.19	1.14 ± 0.08	32.15 ± 15.9
Alg-UAE	Peak 1	121.5 ± 17.9	215.3 ± 7.88	1.18 ± 0.07	88.77 ± 70.12
	Peak 2	3.55 ± 0.36	3.85 ± 0.68	1.08 ± 0.08	5.54 ± 4.91
Alg-	Peak 1	121.9 ± 13.5	172.4 ± 14.1	1.42 ± 0.08	147.2 ± 52.54
EAE/CCE	Peak 2	4.73 ± 0.04	5.70 ± 0.2	1.21 ± 0.03	52.04 ± 41.12

Alg-UAE and Alg-EAE/CCE had higher molecular weight than other extracts

Similar to Fuc-MAE, Alg-MAE also had lower molecular weight. Additionally the peak area was also lower (corresponding with lower yield)

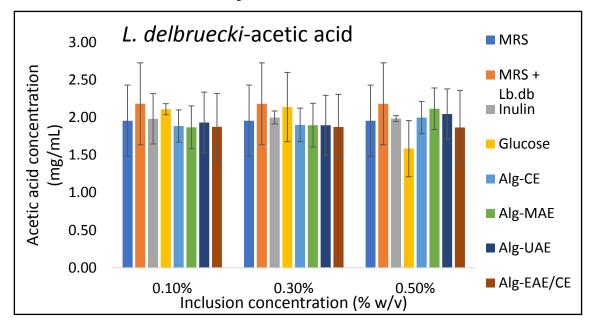
Extraction method	M-OH wave number (cm ⁻¹)	G-OH wave number (cm ⁻¹)	M-OH peak intensity	G-OH peak intensity	M/G ratio
Alg-CCE	1032	1085	44.54	51.44	0.866
Alg-MAE	1034	1095	49.16	54.73	0.898
Alg-UAE	1034	1085	24.65	31.36	0.786
Alg-EAE/CCE	1034	1086	41.29	46.78	0.883
Alg-STD*	1031	1095	53.93	55.84	0.966

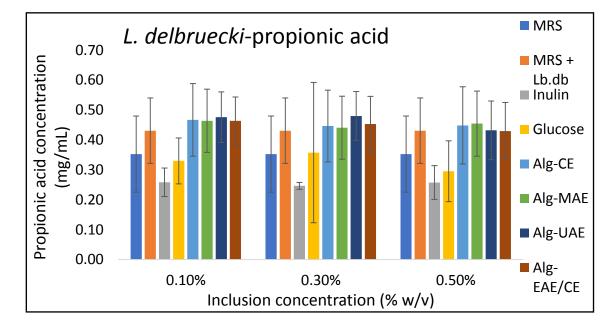

M/G ratio indicates mannuronic (M) and guluronic acid (G) variations in the Alginate. Particularly important in determining the gelling properties

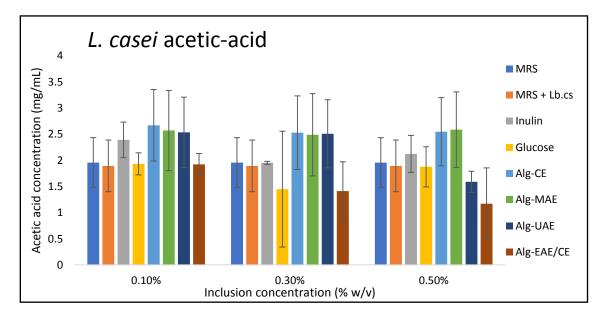
M/G ratio of the extracts showed higher guluronic acid intensity. Among the extracts, no significant difference was observed

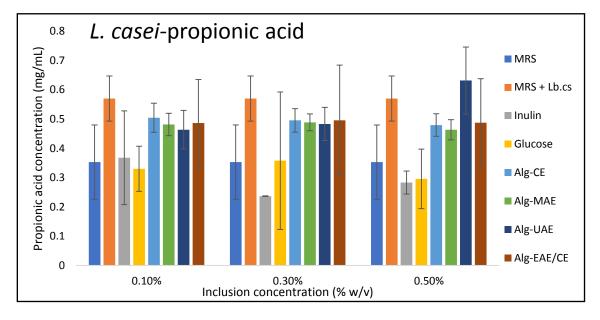
Extraction Method	L	<i>L. casei</i> doubling time (hr)			<i>L. delbruecki</i> doubling time (hr)			
	MRS+Lb.db	0.1%	0.3%	0.5%	MRS+Lb.cs	0.1%	0.3%	0.5%
Inulin		3.031 ± 0.298	2.888 ± 0.558	2.806 ± 0.479		2.171 ± 0.291	2.051 ± 0.017	2.149 ± 0.157
Glucose		3.057 ± 0.339	2.863 ± 0.267	2.960 ± 0.486		2.015 ± 0.087	2.005 ± 0.063	2.046 ± 0.140
Fuc-CCE	3.90 ± 2.19	1.597 ± 0.082	1.726 ± 0.240	1.843± 0.124	2.426 ±	2.393 ± 0.051	2.701 ± 0.075	2.586 ± 0.124
Fuc-MAE	3.90 ± 2.19	1.956 ± 0.249	1.901 ± 0.119	2.008 ± 0.114	0.239	2.723 ± 0.011	2.646 ± 0.031	1.942 ± 0.032
Fuc-UAE		1.898 ± 0.127	1.704 ± 0.076	1.785 ± 0.167		2.540 ± 0.115	2.379 ± 0.097	2.410 ± 0.072
Fuc_EAE		1.668 ± 0.165	1.790 ± 0.263	1.937 ± 0.327		2.287 ± 0.012	2.369 ± 0.155	2.494 ± 0.062

Prebiotic Activity of Alginate


0.9




Inclusion concentration of extracts (% w/v)


Extraction Method	Inclusion	Change in pH of <i>L. delbruecki</i>	Change in pH of <i>L. casei</i>
	concentration	medium	medium
MRS	-	-0.036	-0.036
L. delbruecki/L. casei	-	-1.275	-1.839
Inulin	0.1	-2.014	-1.876
	0.3	-1.984	-1.872
	0.5	-2.003	-1.927
Glucose	0.1	-2.010	-1.854
	0.3	-1.990	-1.877
	0.5	-1.996	-1.868
Alg-CCE	0.1	-1.593	-2.629
	0.3	-2.318	-3.384
	0.5	-2.929	-3.469
Alg-MAE	0.1	-1.730	-2.710
	0.3	-2.448	-3.475
	0.5	-3.178	-3.451
Alg-UAE	0.1	-1.560	-2.613
	0.3	-2.172	-3.294
	0.5	-3.029	-3.405
Alg-EAE/CCE	0.1	-1.410	-2.637
	0.3	-2.143	-3.175
Higher reduction in the	ne pH of extract sup	plemented media than blank contr	ol -3.452

Short Chain Fatty Acid Production

- Microwave-assisted extractions resulted in extracts with desirable structural properties including lower molecular weight, higher monosaccharide content and higher sulphate content – particularly for fucoidan
- Both fucoidan extracts showed prebiotic potential on L. delbruecki and alginate extracts showed prebiotic potential on both L. delbruecki and L. casei
- The extraction techniques did not have an impact on the prebiotic property of the fucoidan and alginate extracts under the tested conditions

Thank You