Agricultural GHG Emissions projectionsand mitigation actions to 2030

Presentation to Oireachtas Committee on Climate Action

Dec 12th 2018

Overview

- Ireland's GHG challenge agriculture
- Scenarios for future emissions (without mitigation)
- Mitigation pathways
 - Agricultural GHG mitigation
 - Land Use Sequestration
 - Energy Efficiency and Fossil Fuel Displacement
 - Bioenergy and Biofuels
- Associated Costs

Background

- Irish agriculture comprises
 - 33% of Irish GHG emissions
 - 45% of Irish non-ETS GHG
- GHG targets
 - 20% emissions reduction by 2020
 - 30% non-ETS reduction by 2030 (2030 Effort Sharing)
 - with 10% allowable to flexible mechanisms
 - LULUCF credits and transfers from ETS
- No subsector targets within non-ETS
- Non ETS Emissions projected to increase
 - Transport and Agriculture
- Can mitigation action bring emissions onto a downward path?

Scenarios to 2030

- Impossible to know future level of activity with certainty
- Depends on
 - international supply/demand -> commodity and farm prices
 - policy (Mercosur, CAP Reform, Brexit)
- Look at 6 activity scenarios
- Based largely around how cow population could evolve
 - in the dairy and beef herd
- Scenarios move along different paths from 2020 onwards
- Look at impact on:
 - Total Cattle Population
 - Other agricultural activities
 - Nitrogen Use
 - Determine associated GHG emissions (without mitigation)

Total Cattle Population: Summary Scenarios S1 to S6 8,000 S4 Total Cattle 000 head **S**3 7,500 S2 **S1** 1.0M S5 7,000 S6 6,500 1 million head difference between S4 and S6 in 2030 6,000 2005 2010 2020 2025 1990 1995 2000 2015 2030 -History -S1 -S2 -S3 -S4 -S5 -S6

Summary: GHG emissions NB: exclude mitigation actions

URE AND FOOD DEVELOPMENT AUTHOR

Source: FAPRI-Ireland Model

Six Scenarios Implications for GHG emissions in 2030 NB: excludes mitigation actions

	2005	2016	2030	2030 vs 2005	2030 vs 2016
		Mt CO ₂ eq		% change	% change
Historical	18.69	19.24			
S1			20.45	9%	6%
S2			20.91	12%	9%
S3			21.31	14%	11%
S4			21.75	16%	13%
S5			19.92	7%	4%
S6			19.45	4%	1%

Evolution of GHG emissions cross the six scenarios NB: excludes mitigation actions

Three Mitigation Pathways to 2030

- 1. Reduce Agricultural Methane and Nitrous Oxide
 - lower emissions from animals, animal waste and fertiliser
- 2. Sequester Carbon (LULUCF)
 - Via land use change and forestry
- 3. Energy efficiency & biofuels and bioenergy production
 - to reduce overall energy usage on farms
 - to displace fossil fuel emissions

1. MACC – Agricultural Abatement

Marginal Abatement Cost Curve for agriculture for 2021-2030

Mean annual values 2021-30

1.	Improved Beef Maternal Traits (CH_4)	0.03 Mt
2.	Beef Genetics: live-weight gain (CH ₄)	0.06 Mt
3.	Dairy EBI (CH ₄)	0.43 Mt
4.	Extended grazing (CH_4)	0.07 Mt
5.	Nitrogen-use efficiency (N ₂ O)	0.1 Mt
6.	Improved animal health (CH_4)	0.1 Mt
7.	Sexed Semen (CH ₄)	0.02 Mt
8.	Inclusion of Clover in pasture (N_2O)	0.07 Mt
9.	Change Fertiliser Type * (N ₂ O)	0.52 Mt
10.	Reduced crude protein in pigs* (N ₂ O)	0.05 Mt
11.	Draining wet mineral soils (N ₂ O)	0.2 Mt
12.	Slurry amendments* (CH_4)	0.03 Mt
13.	Adding Fatty Acids to dairy diets (CH_4)	0.03 Mt

* Double dividend as it also reduces ammonia emissions

Impacts on 2030 GHG targets S1 Scenario with mitigation

2. MACC - Land-Use Sequestration

Mean annual values 2021-30

15. Grassland Management	0.26 Mt
16. Water table mgt of organic soils	0.44 Mt
17. Forestry	2.1 Mt
18. Tillage Mgt – Cover crops	0.1 Mt

3. MACC - Energy Efficiency, Bioenergy and Biofuels

_20.	Energy efficiency on farm	0.03 Mt
21.	Wood Biomass* for energy	0.76 Mt
22.	SRC & Miscanthus for Heat	0.18 Mt
23.	SRC for Electricity	0.19 Mt
24.	Anaerobic Digestion**	0.22 Mt
25.	Biomethane	0.15 Mt
26.	Oil Seed Rape for Biodiesel	<u>0.18 Mt</u>
27.		0.03 Mt

*thinnings and sawmill residues
**slurry and grass for CHP
^fails to meet 50% GHG offset sustainability threshold

Summary of Emissions and Mitigation

	Historical emissions (Mt CO ₂ -e yr ⁻¹)		Projected Emissions		
	1990	2005	2016	Mean 2021-2030	2030
				Emissions without Mitigation	
Total Agriculture emissions (ex. Fuel)	19.51	18.69	19.24	20.28	20.45
				Mitigation	
Cost effective Agriculture mitigation				1.73	2.89
Cost effective LULUCF offsets*				2.80	3.50
Cost effective energy mitigation				0.99	1.31
Total Mitigation				5.52	7.70

Associated Costs

GHG mitigation

- Most (>85%) mitigation < €50/t CO₂e
 - Agricultural Mitigation generally cheaper
 - Land Use and Energy more expensive
- Farm level agricultural efficiencies
 - e.g better breeding
 - can potentially <u>save</u> €136m p.a.
- Technical measures
 - cost €157m p.a. for Ag, Forestry and Land Use
- Bioenergy costs
 - calculated at €58m pa
 - but higher uncertainty about feasibility

Conclusion

- WARNING: Across the world there is a poor take up of GHG mitigation actions by the ag sector
- Without mitigation, Ag GHG emissions are likely to increase
 - Mainly due to increased dairy production
 - Which would lead to a larger cattle population
- Significant mitigation potential exists
 - But these solutions exist on paper only
 - Significant communication and action required
 - Particularly at farm level to realise these emissions reductions

Further Reading

- Gary J. Lanigan & Trevor Donnellan (eds.) <u>An Analysis of Abatement</u> <u>Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030</u>. Teagasc, Oak Park, Carlow. June 2018
- Donnellan, T., Hanrahan, K and Lanigan G.J. <u>Future Scenarios for Irish</u> <u>Agriculture: Implications for Greenhouse Gas and Ammonia Emissions</u>. Teagasc, Athenry. June 2018

