Climate Change – what agriculture can do

Professor Gerry Boyle, Director Teagasc
Presentation to Briefing for Oireachtas Members and MEPs
October 24th 2018

2018 – a very difficult year

- Several extreme weather events ... indicative of Climate Change (CC)
- Challenging fodder situation but highly variable
- Substantial additional costs; reduced incomes; and stress
- What can agriculture do to combat CC?

Background

- Irish agriculture comprises
 - 33% of Irish GHG emissions
 - 45% of Irish non-Emissions Trading Scheme (ETS) GHG
- GHG targets
 - 20% emissions reduction by 2020
 - 30% non-ETS reduction by 2030
 (EU 2030 Effort Sharing) with up to 10% flexible mechanisms allowable due to LULUCF credits and transfers from ETS

Total Cattle Population: Scenarios

Source: FAPRI-Ireland Model

GHG emissions with NO mitigation actions

Source: FAPRI-Ireland Model

Three Mitigation Pathways to 2030

- 1. Reduce Agricultural Methane and Nitrous Oxide
 - lower emissions from animals, animal waste and fertiliser
- 2. Sequester **Carbon** (LULUCF)
 - Via land use change and forestry
- 3. Energy efficiency & biofuels and bioenergy production
 - to reduce overall energy usage on farms
 - to displace fossil fuel emissions

1. Agricultural Abatement

Saving

2030

M	easure	Mean ann. savin
		2021-30
1.	Improved Beef Maternal Traits (CH ₄)	0.03 Mt
2.	Beef Genetics: live-weight gain (CH ₄)	0.06 Mt
3.	Dairy EBI (CH ₄)	0.43 Mt
4.	Extended grazing (CH ₄)	0.07 Mt
5.	Nitrogen-use efficiency (N ₂ O)	0.10 Mt
6.	Improved animal health (CH ₄)	0.10 Mt
7.	Sexed Semen (CH ₄)	0.02 Mt
8.	Inclusion of Clover in pasture (N ₂ O)	0.07 Mt
9.	Change Fertiliser Type* (N ₂ O)	0.52 Mt
10.	Reduced crude protein in pigs* (N ₂ O)	0.05 Mt
11.	Draining wet mineral soils (N ₂ O)	0.20 Mt
12.	Slurry amendments* (CH ₄)	0.03 Mt
13.	Adding Fatty Acids to dairy diets	(CH ₄) 0.03 Mt
14. Low-emission slurry spreading* (N ₂ O) Total		0.12 Mt 1.85

^{*} Double dividend as it also reduces ammonia emissions

2. Land-Use Sequestration

Measure	Mean ann. saving	2030
15. Grassland Mgt.	2021-2030 0.26 Mt	
16. Water table mgt. of org. soils		
17. Forestry	2.10 Mt	
•		
18. Tillage Mgt – Cover crops	0.10 Mt	
19. Tillage Mgt – Straw incorp.	0.06 Mt	
Total	2.96	3.89

3. Energy Efficiency, Bioenergy and Biofuels

Measure

20.	Energy	efficiency	on farm
-----	--------	------------	---------

- 21. Wood Biomass* for energy
- 22. SRC & Miscanthus for Heat
- 23. SRC for Electricity
- 24. Anaerobic Digestion**
- 25. Biomethane

Total

Mean ann. Saving saving 2030

2021-30

0.03 Mt

0.76 Mt

0.11 Mt

0.10 Mt

0.22 Mt

0.15 Mt

1.37

^{*}thinnings and sawmill residues

^{**}slurry and grass for CHP

Impacts on 2030 GHG targets S1 Scenario with mitigation

Associated Costs

GHG mitigation

- Most (>85%) mitigation < €50/t CO₂e
 - Agricultural Mitigation generally cheaper
 - Land Use and Energy more expensive
- Farm level agricultural efficiencies
 - e.g better breeding
 - can potentially save €136m p.a.
- Technical measures
 - cost €157m p.a. for Ag, Forestry and Land Use
- Bioenergy costs
 - calculated at €58m p.a.
 - but higher uncertainty about feasibility

Conclusions

- WARNING: Across the world there is a poor take up of GHG mitigation actions by the ag sector
- Without mitigation, Ag GHG emissions are likely to increase
 - Mainly due to increased dairy production
 - Which would lead to a larger cattle population
- Significant mitigation potential exists
 - But these solutions exist on paper only
 - Significant advisory input required <u>plus</u>
 - Policy measures to encourage uptake of mitigation measures

Thank you