Improved Irish Nitrous Oxide Emission factors and mitigation measures

Karl Richards¹, D.J. Krol¹, P.J. Forrestal¹,, R. Carolan², C. Watson² and G.J. Lanigan¹ ¹Teagasc, Johnstown Castle, Ireland ²The Agri-Food & Biosciences Institute, Northern Ireland

Introduction

- Agriculture 32% National Emissions
- Agricultural soils and manure (N₂O) 40% agricultural emissions
- Fertiliser and dung/urine main N₂O sources
- Objectives
 - Establish national emission factors
 - Evaluate potential mitigation options

Arable Spring Barley

Grassland

Grassland fertiliser N₂O

Adapted from Harty et al. (2016) Science of the Total Environment. 563-564: 576-586

Spring Barley Fertiliser N₂O

Adapted from Roche et al. (2016) Agriculture Ecosystems and the Environment Agriculture 233 229-237

Spring Barley Fertiliser N₂O

Adapted from Krol et al. (2016) Science of the total environment 568 327-338

New National N₂O Emission Factors

	Default EF%	Irish EF %	EF range %
GRASSLAND FERTILISER			
CAN	1	1.49	2.74 – 0.87
Urea	1	0.25	0.40 - 0.18
Urea+NBPT	1	0.40	0.21 – 0.69
SPRING BARLEY FERTILISER			
CAN	1	0.42	0.35 – 0.49
Urea	1	0.29	0.27 – 0.31
Urea+NBPT	1	0.22	0.20 - 0.23
GRASSLAND ANIMAL DUNG/URINE			
Dung	2	0.31	0.02 - 1.48
Urine	2	1.18	0.31 - 4.81

Harty et al. (2016) Science of the Total Environment. 563-564: 576-586.

Roche et al. (2016) Agriculture Ecosystems and the Environment Agriculture 233 229–237. Krol et al. (2016) Science of the total environment 568 327–338.

Revised national inventory - new EFs

Impact of New Emission Factors

Agricultural GHG Mitigation

- Reduction and offsetting by agriculture >6 MT CO_{2-e} yr⁻¹
- Agricultural mitigation 1.85 Mt CO_{2-e} yr⁻¹
- Fertiliser Types largest potential mitigation measure
- Replacing 50% CAN with urea+NBPT
 - -0.521 Mt CO_{2-e} yr⁻¹

Adapted from: Lanigan and Donnellan (2018) An Analysis of Abatement Potential of Greenhouse Gas Emissions in Irish Agriculture 2021-2030, Teagasc, Ireland.

Conclusions

- Refinement of national emission factors
 - Reduced overall emissions
 - Resulted in fertiliser becoming the main N₂O source
 - Enabled mitigation measures to be incorporated
- New Emission Factors now used to report to IPCC

Funding gratefully acknowledged from: Dept. Agriculture, Food and the Marine Dept. Agriculture, Environment and Rural Affairs (Grants: RSF 10-/RD/SC/716, 'AGRI-I', RSF 11/S1/38, 'SUDEN', RSF 13/S/430, 'Low Ammo' & RSF 15/S655, 'MINE')

Agriculture, Food and the Marine Talmhaíochta, Bia agus Mara