Application of Genomic Technology to Irish Livestock

Deirdre Purfield (PhD) Teagasc, Moorepark, Ireland

deirdre.purfield@teagasc.ie

Genomic Technology in Agriculture, St Petersburg 31/05/2018

- Genetics Research Team
 - **Researchers:** Donagh Berry, Noirin McHugh, Sinead McParland, Deirdre Purfield, Tara Carthy, Michelle Judge, Jessica Coyne
 - Post-graduate students: Siobhan Ring, Alan Twomey, Aine O'Brien, Tom Byrne, Jennifer Doyle, Pierce Rafter, Fiona Dunne, Shauna Fitzmaurice, Stephen Connolly

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Access to ICBF Database

Industry

Dairy Industry

- 1.4 million dairy cows
- 18,000 Herds
- Avg herd size: 80 cows
- ~93% Holstein-Friesian
- Seasonal grass based
- Export 90% milk produced
- Economic Breeding Index

Beef Industry

- 1.1 million beef cows
- 19,000 Herds
- Avg herd size: 40 cattle
- Continental Crossbreds
- Seasonal grass based
- Export 90% beef
- Replacement Index
- Terminal Index

Sheep Industry

- 2.6 million ewes
- 13,000 Herds
- Avg herd size: 133 ewes
- Crossbred
- Seasonal grass based
- Export 70% sheep meat
- Replacement Index
- Terminal Index

Importance of seasonality

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Dairy Breeding

Fertility 35%

Production 33%

■ Milk ■ Beef

🗆 Calving 🗖 Health

Calving 10%

■ Management

Economic Breeding Index (EBI)

International Dairy Objectives

Beef Breeding

Terminal Index

Replacement Index

- Carcass fat
- Carcass conformation
- Carcass weight
- Feed Intake
- Docility
- Direct perinatal mortality
- Direct gestation length
- Direct calving difficulty
- Cull cow weight
- Maternal weaning weight
- Maternal calving difficulty
- Fertility and survival
- Progeny Carcass
- Feed Intake
- Docility

Direct Calving Difficulty

Sheep Breeding

Replacement Index

- Days to Slaughter
- Carcass Conformation
- Carcass fat
- Direct lambing difficulty
- Direct lamb survival

- Days to Slaughter
- Carcass Conformation
- Carcass fat
- maternal days to slaughter
- Maternal carcass conformation
- Maternal carcass fat
- Ewe mature weight
- Maternal Lamb surivial
- Maternal Lambing difficulty
- Number lambs born
- Direct lambing difficulty
- Direct lamb survival

The power of breeding...

Estimated breeding value

The power of knowledge

Genomic Selection in Ireland

- Second country in the world to release in 2009
- Young dairy bull reliability increased from 32% to 63% (and increasing)
 - Less fluctuations in bull proofs
 - Recommend bull team use
 - ≻50% increase in genetic gain
- Large scale genotyping
 - Custom genotyping panel IDB
 - Better heifer selection

Generation of genomic BVs

Currently two-step approach

Uptake of genomic selection

	% Use	No. bulls	Ave no. bulls used	Average EBI	EBI Rel
DP-INT	5	165	2.6	€137	59%
DP-IRL	14	314	1.9	€152	88%
GS	80	319	4.8	€237	63%

Number of straws of GS bulls increasing year-on-year

Genomic reliability

Custom genotyping panel

IDB19 INTERNATIONAL DAIRY & BEEF 19K SNP CHIP (VERSION 0.1)

Designed in association with the Irish Cattle Breeding Federation (ICBF), Teagasc, Weatherbys and USDA's Agricultural Research Service.

This custom chip is the very latest design catering for both Beef and Dairy.

The chip consists of the Iliumina LD (7K) base content plus a further 12,000 (12K) SNP's carefully selected to ensure very high imputation accuracy to HD & to convert to Microsatellite data for parentage verification. This extra panel of SNP's provides the very latest dual product for both Beel & Dairy breads.

The ISAG recommended Parentage SNP's both the core and additional panels are present on the chip.

The IDB19 also contains a comprehensive selection of genetic markers to screen for genetic disorders & desirable traits.

For more details Contact: Weatherbys Ireland DNA Laboratory

<u>IDBV3</u> 53,988 SNPs

Base Illumina Low density 40,446 - dairy genomics 5,765 impute to HD beef 1,927 impute to microsats 800 AA & HE prediction

4 lethal mutations 291 "known major genes" 5,345 research SNPs

IDBV4 in preparation

Number of genotyped cattle

Number of genotyped sheep

Panel	Density	No. of animals
Ovine SNP50	51,135	3,512
Custom Infinium	15,000	9,378
AgR Ovine HD	606,000	303
Custom Axiom	51,135	84
Custom Axiom 11K	11,000	1902
Custom Axiom 50K	50,000	1080
Genomic Selection foc	using on 6 ma	ain breeds
Belclare Beltex Charollais	Suffolk Texel	Vendeen
		[

Other applications

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Determining Parentage

Sire

.TCACCGCTGAG.....

...CAGATAGGATT.....

.....GTTAGCCTGTCA

Offspring

Determining Parentage

Sire

Sire-offspring errors Dairy ~7.5% Beef ~14% Sheep ~13%

GCATTCAGTCAT

.GCTAGTTACTGG

pring

Impact of parentage error

Parentage resolution

By checking against the genotypes of all sires we can correct 80% of parentage errors

Breed Composition

50% LM : 50% HF (assuming parents are pure)

50% CH : 25% HF : 25% LM 50% CH : 50% HF : 0% LM 50% CH : 0% HF : 50% LM

Breed Composition

• What if the animal was not genotyped as a calf?

Chromosome abnormalities

- Turner syndrome
- Single X chromosome
- Will **NEVER** be fertile!

Detectable using readily available information from genotype file

Characterization of an X-chromosomal non-mosaic monosomy (59, X0) dairy heifer detected using routinely available single nucleotide polymorphism genotype data¹

D. P. Berry,*² A. Wolfe,† J. O'Donovan,‡ N. Byrne,* R. G. Sayers,* K. G. Dodds,§ J. C. McEwan,§ R. E. O'Connor,# M. McClure, D. C. Purfield*

Aneuploidy in dizygotic twin sheep detected using genome-wide single nucleotide polymorphism data from two commonly used commercial vendors

D. P. Berry¹⁺, A. O'Brien¹, J. O'Donovan², N. McHugh¹, E. Wall³, S. Randles³, K. McDermott³, R. E. O'Connor⁴, M. A. Patil⁵, J. Ho⁵, A. Kennedy¹, N. Byrne¹ and D. C. Purfield¹

Genomic Precision Matings

Real Examples

Same sire +same dam

3 Progeny

All Full Sibs

Sire Advice Results The predicted outcome of selected matings

Standard Report Detailed with Sub Indexes Detailed with Traits

Genomic Inbreeding Coeffiecient

26.26%

ICBF Web Application

										HOME	ADMIN 🔻	REPORTS	▼ RECORD	EVENTS 🔻	VIEW PROFILES	✓ APPLICATIONS ▼	SERVICES	v	
Showing 1 to 86 of 86 entries Hole fi							Click Column Heading to sort by that attribute. Number of Animals Displayed :86 Keset												
			From	From	From	- From	-	From	From	Sh 🔻 S	how All	۲							
Freeze Band Tag	Tag Number	Bull 1	То	То	То	То	To			umbo Animal Number			Date of Birth	Breed	Breed		FR2239 (HO) FR2385 (HO) FR402		
								То	То	165A	IE2418494	<u>30165</u>	07/02/07		HO (56%),	FR (44%)	0.00	0.00	0.0
										260	IE2418494	40260	02/03/09		HO (1	00%)	0.00	0.00	0.0
Freeze Band	tag Number	\$ Bull 1	≎ EBI€ ¢	: Milk SI€ ¢	Fertility SI € ≎	Calving SI € <) Beef SI€ ¢	Maintenance SI € 🛛 🗧	¢ Management SI€	270	IE2411823	<u>30270</u>	23/04/09		HO (47%), FR (4	17%), UN (6%)	0.00	0.00	0.0
165A IE241849480165										294	IE2418494	50294	16/01/10		HO (56%),	FR (44%)	1.95	0.00	0.7
	FR2239	184	84 34	110	32	-2	7	4	313	IE2418494	70313	16/03/10		HO (97%),	FR (3%)	0.00	0.00	0.0	
	150.000.00000	500005	105							314	IE2418494	30314	20/03/10		HO (94%),	FR (6%)	0.00	0.20	0.0
260	IE241849440260	FR2365	195	64	95	30	-13	1/	4	335	IE2418494	10335	18/01/11		HO (91%),	FR (9%)	1.56	0.00	0.7
270 IE241182380270	IE241182380270	FR2239	210	41	109	43	-8	14	6	346	IE2418494	70346	13/02/11		HO (94%),	FR (6%)	1.95	0.39	0.7
					10	~		·	353	IE2418494	<u>60353</u>	18/02/11		HO (1	00%)	3.13	0.00	1.5	
294	IE241849450294	FR2239	203	48	110	42	-6	2	1	365	IE2418494	10365	08/03/11		HO (25%), FR (2	5%), JE (50%)	0.00	0.00	0.0
313 IE2418			9 205	49	91	46	-4	7		366	IE2418494	20366	10/03/11		HO (38%), FR (1	3%), JE (50%)	0.00	3.13	0.7
	IE241849470313	FR2239							6	371	IE2418494	30371	21/03/11		HO (88%),	FR (13%)	0.00	3.32	0.7
314 IE241849480314										373	IE2418494	10373	26/03/11		HO (38%),	FR (63%)	0.00	6.25	1.8
	FR2239	199	62	82	42	-11	1/	4	374	IE2418494	20374	26/03/11		HO (38%),	FR (63%)	0.00	6.25	1.5	

Precision genomic matings

CF52 * Daughters of IDU

Genomic Management

0.00

0.01

Daughter prevalence

Daughter prevalence

0.10

0.11

0.12

0.02 0.03 0.05 0.05 0.07 0.07 0.08

Tracking Lethal Recessives

Carries CVM

- Non-CVM allele (B) expressed whenever present
- CVM Allele is recessive "hidden" when with non-CVM
- Identify carriers using IDB chip
- Choose NOT to mate 2 carriers of CVM

Identifying DNA Variants

- Members of the 1000 Bull Genomes Project + 1000 Ram Genomes Project
- Imputed 635,000 cattle to sequence

25,400,000,000,000 genotypes

Purpose: To identify DNA variants affecting performance and improve genomic predictions

genetics

Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals

Aniek C. Bouwman, Hans D. Daetwyler, 🛛 [...] Ben J. Hayes 🔤 👘

Example hairlip mutation

- 25 cases & 25 controls
- Analysis being undertaken with sequence
- Dominant
 - Sire did not express phenotype
 - De novo, incomplete penetrance, epistasis
 - Very small proportion of progeny
 - De novo mosaic

Conclusions

- Inclusion of genomic information into evaluations clearly beneficial
 - Ongoing research for better, more efficient methods
 - Constantly evolving -> new traits
 - Profit orientated

•Uptake of Genomic Selection in Ireland has been high

Custom genotyping panel very beneficial

- •Multiple uses of DNA
 - •Parentage, traceability, breed prediction, tracking lethal recessives, genomic inbreeding, genomic management.
 - •Access to high value markets

